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CHAPTER 1
INTRODUCTION

The need for multidimensional signal processing in manifold areas of
applications is now well recognized. The important role of passive digital
filtering and related multidimensional modelling schemes in the general area of
multidimensional signal processing, and in particular, in the areas of image
processing, target tracking etc., has already been documented in an earlier
report (1) and thus, its discussion will not be undertaken here. A brief
description of the results obtained during the course of the present
investigation subsequent to those reported in [1l] follows.

In chapter 1 properties of various multidimensional polynomials arising in
studies of passive (lossless) discrete mltidimensional systems are
investigated. Reactance Schur polynomials and immittance Schur polynomials
occurring respectively as the denominators (and numerators) of discrete
reactance functions and discrete positive functions are introduced and their
properties studied. Role of these polynomials in scattering or immittance
descriptions of passive discrete time domain multiports are brought out. The
interrelation between classes of multidimensional polynomials arising in
discrete systems and the corresponding classes of polynomials in the context of
continuous systems is also studied via the mechanics of bilinear
transformation.

In chapter 2 the problem of structurally passive synthesis of multidimensional
digital filters of the quarter~plane causal type as an interconnection of more
elementary building blocks directly in the discrete domain has been addressed
via the factorization of the chain matrix, the hybrid matrix and the transfer
function matrix associated with a prescribed multidimensional lossless
two~-port. By exploiting recent results on the discrete domain representation of
such matrices a generalized lossless two-port matrix has been introduced to
present all three factorizations in an unified setting. Necessary and
sufficient conditions for factorability as well as algorithm for computing
these factors when they exist are obtained. In particular, it is shown that in
one-dimension the factorizations can always be performed. Thus, in 1-D,
discrete domain algorithms for synthesizing previously unpublished internally




passive structures as well as alternative methods of synthesis for more
conventional structures such as the cascade structure are also obtained as a
byproduct of our discussion. Since most multidimensional applications dictate
that the filter be either symmetric or (quasi) antimetric, special attention is
paid to the problem of synthesis of these subclasses of multidimensional
lossless two-ports.

Due to difficulties inherent to the mathematics of quarter plane
multidimensional filtering, (e.g., polynomial nonfactorability etc.) the
alternative approach of studying passive filters of the fully recursive
half-plane causal type is undertaken in chapter 3 for the first time in the
literature. Apart from the tractability of analylis and design, such filters
have the potential to maximally expleoit the currently emerging parallel (VLSI
and/or optical) architechture, when implementation is called for. Thus, passive
and lossless two-dimensional digital one-ports as well as two-ports of the
fully recursive half-plane type are introduced and are characterized in terms
of their transfer function descriptions. An algorithm for the structurally
passive synthesis of filters having such recursive structure is then derived
from these representation results as an extension of a recent Schur type
algorithm for the synthesis of discrete lossless two-ports. Design methods for
important practical cases when frequency response of the filter is required to
have specific symmetries are also presented.

Finally, results are summarized, conclusions are drawn and recommendations for
further work are made in chapter 4.

Each of the following chapters are self contained and can be read
independently. For similar discussions in the open literature we refer to the
publications (2], [3] and (4] in the following. ’




(1]

(2]

(3]

(4]
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CHAPTER 2
SOME NEW RESULTS ON STABLE
MULTIDIMENSIONAL DIGITAL FILTERS

2.1. INTRODUCTION:

The scattering Hurwitz polynomials have been introduced recently as the
denominators of (rational) bounded functions arising in studies on passive
multidimensional (k-D) networks [1]. Subsequently, the denominator polynomials
of (rational) reactance functions and (rational) positive functions have also
been characterized as the reactance Hurwitz and the immittance Hurwitz
polynomials respectively [2]). We also refer to [3] for a related discussion. In
view of recent interest in synthesis of passive digital filter networks
directly in the discrete domain, a study of properties of the corresponding
polynomials arising in discrete time systems seems highly relevant.
Furthermore, it is now known to researchers in the field that unlike the 1-D
case, in multidimensions discrete counterparts of certain continuous domain
results need not always be true (4-6]. A separate treatment for discrete time
systems is thus needed for a more careful analysis. The first step in this
direction has been taken in [7) by studying the properties of discrete
scattering Hurwitz polynomials. In the present paper further properties of this
latter class of polynomilas are studied, discrete reactance Hurwitz polynomials
and discrete immittance Hurwitz polynomials, ocurring as the denominators (and
consequently the numerators) of discrete reactance functions and discrete
positive functions, are introduced and their properties, as they relate to both
single-port and multi-port passive digital networks, are studied in detail. It
is possible, at least in principle, to undertake the abovementioned discussion
via the wutilization of multiple bilinear transform and analogous results
already existing [2] for continuous systems. However, it turns out, due to
difficulties of the type elaborated in {4-6], that such an indirect approach is
neither mathematically elegant nor is it desirable from the standpoint of a
self-contained theory of passive multidimensional discrete systems. Therefore,
the present paper has been organized in such a way that it can be read
indepedently of all existing publications on continuous systems.

In what follows we will consider polynomials a=a(z) in k-variables z =
(zl,zz,...zk). All polynomials and rational functions are assumed to be
functions of k-variables unless otherwise specified. A k-variable polynomial a
will said to involve a variable L if the indeterminate zZ4 actually exists in




at least one of the monomials comprising the polynomial a. A polynomial will be
called non-trivial if it involves at least one of the variables z;, i=1tok.
More generally, the above comments apply if a is a rational matrix function in
z =(25,25,...2,). If a = a(z) is written as a polnomial in 2z, as:
as= gi avz\i’ (2.1.1)
v=(

where the coefficients a,’s are p}olynomials in the remaining variables with a,.
A 0, then n, is called the partial degree of a in the variable zZ; and is to bd
denoted by degia. Occassionally, we will write in a compact notation z'=
(22,23,...zk). Two polynomials will be said to be relatively prime if they do
not have a proper (i.e., a non-constant) factor in common. A rational function
will be said to be in irreducible form if the numerator and denominator
polynomials are relatively prime. The discrete paraconjugate & of a polynomial
as= a(zl,zz,..,zk) in k-variables z = (zl,zz...,zk) is defined as:

~ N 1 -1 -1 n

& =a.z o, gherg a= a;(zI 25 ,...,z; ), and the notation z © denotes the
monomial zy 122 2...:k k; n, = degia. The superscript * denotes complex
conjugation. Note that the discrete paraconjugate of & is not necessarily equal
to a. The polynomial a will be called discrete selfparaconjugate if & = ya,
where y is a (necessarily unimodular) constant. In addition, a will be called
discrete paraeven or discrete paraodd according as y=1 or y=-1. The notation
[z < 1 will mean |zi| <1 for all i = 1 to k. Obvious variations of this

notation with the symbocl > replaced by =, <, <, > etc. will be used.

The tewms sequentially almost complete set © or sequentially infinite set ©, as
defined in (2] will be used. In the present context, however, the elements of
the m~tuple (91,'92,...6m) belonging to © will, unless otherwise specified, be
chosen from the field of real numbers modulo 2n.

We will have the occasion to consider the polynomial a z associated with the
polynomial a, as defined in the following. Let a-a(z)-a0+alz+...anzn, where the
coefficients ai's are polynomials in several variables over the field of
complex numbers. Then associated with a we define a polynomial a, via the
formal algebraic operation as: az-az(3)~b°+blz+...bnz“ » where b.=(n-2i)a, for
i = 0,1,...n. Further elementary properties of the polynomial a, are derived




in appendix 2,c., More important definitions will be introduced as they become
necesary in the main text.

various classes of polynomials devoid of zeros in the unit polydisc will, in
general, be referred to as the multidimensional Schur polynomials. This is a
departure from the previously adopted terminology in [7),{8], but is consistent
with the terminology used for the corresponding class of one-variable
polynomials in the literature. Properties of the widest sense Schur
polynomials, selfparaconjugate Schur polynomials and scattering Schur
polynomials are discussed in section 2.2. Section 2.3 contains discussion on
elementary properties of multidimensional discrete positive functions. In
section 2.4 reactance Schur and immittance Schur polynomials respectively
occuring as the numerators (and consequently denominatcrs) of discrete
reactance functions and discrete positive functions are introduced. Extensions
of some of these results to passive multiports are discussed in section 2.5.
Finally, interrelationship between the various classes of multidimensional
Schur polynomilas and the corresponding classes of multidimensional Hurwitz
polynomials is examined via the artifice of bilinear transformation in section
2.6, and conclusions are drawn in section 2.7. An appendix is included, where
some general properties of multidimensional polynomials proved elsewhere are
stated, and a few basic formulae occurring in studies of discrete systems are
derived. For consistency in the logical seguence in which the proofs of results
are arranged in the present paper, theorems 2.2.2.7 and 2.2.2.8 should be read
after 2.3.6 and before corollary 2.2.3.7. However, theorems 2.2.2.7 and 2.2.2.8
are incorporated eaclier in section 2.2.2 rather than in section 2.2.3, beacuse
this allows for a more systematic categorization of the properties of various
classes of multidimensional Schur polynomials.




2.2. VARIOUS CLASSES OF SCHUR POLYNOMIALS
2.2.1. Widest sense Schur polynomials:

Definition 2.2.1.1: A polynomial a is called widest sense Schur if ay0 for |z|
< 1.

Theorem 2.2.1.2: If a(z) is a widest sense Schur polynomial in k-variables
Eg(zl,zz,...zk), then the polynomial a’(z’) in (k-1) variables z' obtained by
freezing z; in lzllil is either widest sense Schur or is identically equal to

zero. Furthermore, the latter instance can occur only for finitely many wvalues
of z) on |zll =],

Proof: Obviously a’(z’') cannot be zero in |z’|<1l for any lzll<l, because if
for some z) = 2z in |z10|<1, a’'(z’') has a zero 2’ = Eig with |£6|<l, then
a(210'56) = 0, which contradicts the widest sense Schur property of a(z).
Furthermore, if a‘(z’) = 0 for some z’ = zj in {z5{<1l, and for z; = 2,, on
|zll-1 then the following two possibilities arise. Firstly, if a’(z2’) =0
i.e., alzy4,2") = 0 for any 2’ then (2-2,,) is a factor of a(z). Obviously,
then there are finitely many values of 2y ON |z1|-1, such that (zl-zlo) is a
factor of a(z). This proves the second part of assertion of the theorem.
Next, to prove the first part, assume that a'(z’') # 0, i.e., (2z{-2,,) is not a
factor of a{z). Then by moving the variable z, by sufficiently small amount
inside |zl|<l from 2y=2, ¢ and by invoking the continuity property of zeros of
a polynomial we would be able to construct a zero of a(z) with lzl|<1 and
l251<1, which contradicts the widest sense Schur property of a(z) and is thus
impossible. :

A repeated application of the above theorem, along with the definition of
sequentially almost complete [cf. Appendix A) set yield the following result.

Theorem 2.2.1.3: let a(z) be a widest sense Schur polynomial in k-variazles z.

Then there exists a sequentially almost complete set of m-tuples O’ of order
m<k, such that the (k-m) variable polynomial obtained by freezing m of the k

variables z;, at z; =3z, with z, = exp(jg;), 0 < 6 < 2n for, say i = 1 tom,

7
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_ is widest sense Schur if (91,62,...eh) € 6 and is identically equal to zero if
(e,,0 ,...Qm) £ Qm'

2.2.2 Selfparaconjugate Schur Polynomials:

r Definition 2.2.2.1: A polynomial a is called self-paraconjugate Schur if a # 0
for |z|<1l and & = ya, where v is a complex number.

~ k n; *
Since &= a l z;  we have for zi-exp(jei), i=1 to k, |&| = |3] = (a | = jaf.

Thus the coﬁ?%ant vy in definition 2.2.2.1 is necessarily unimodular i.e.,
[vi=1.

Lemma 2.2.2.2: Let a be a selfparaconjugate Schur polynomial in k-variables z,

and axﬂo be the (k-1) variable polynomial obtained by freezing in a one of the
variables, say zy, on 'le = 1. Then degia - degiax for the remaining
variables i = 1 to k but is\.

Proof: Assume Mfl. Let us write the polynomial a as in (Zkl.la_with i=1. Then
it follows from property 2.B8 in the appendix that Ya, =a, | z; L FurthrmBre,
o = &0 1z,

since degiaogni, it follows from the last equationlthai'$a
= 0 for some &Afzxo 652|zx|-1

where p; are some nonnegative integers. If a,
irrespective of the other variables then (z—zxé) must be a factor of a, and
thus a factor of ao. This later conclusion, however imply that (zx—zxo} is a
factor of ao, and therefore a=0 for zy=2y and zl-O irrespective of other
variables, and consequently, either axno or a, is not widest sense Schur.
However, since axﬂo by hypothesis, this is in contradiction with theorem 2.1.1.
Therefore, a, M0 for any zy, on lle-l. The validity of the present lemma for
other values o} i can similarly be demonstated by writting a as a polynomial in
z; with coefficients as polynomials in remaining variables.

Theorem 2.2.2.3: If a is a self-paraconjugate Schur polynomial in k-variables
then the polynomial a’ in (k-1) variables obtained by freezing any one of the
variables, say zq, is also self-paraconjugate Schur for an almost complete set

of values on |zll =]

Proof: From theorem 2.1.1, a’ is widest sense Schur for an almost complete set

8




of values of 91 in Q591<2u, where zl-exp(jei) i.e., for an almost complete set
z; on lzll = 1. It remains to show that a’ = y’.a’, where y'is a constant. By

substituting zl-exp(jel) in d=va it follows that
21 k n,
a*(exp(jel),z; ,...z; )(exp(jelnl))_llzzi1 = ya((exp(jel),zl,...zk), where

1=

ni-degia. The desired result then follows by noting that the right hand side of
the 1last equality is va'’, whereas the left hand side due to the fact that
degia-deg.la'-ni (lemma 2.2.2.2)is equal to (exp(jnlel))a'.

Repeated use of the above result yields the following theorem.
Theorem 2.2.2.4: Let a be a self-paraconjugate Schur polynomial and a be the
polynomial obtained by freezing m, m<k, of the k-variables, say

Z; i=1¢tom on |zi| =1i.e., z, = exp(jei) H 059i<2“’ Then there exists a
sequentially almost complete set eh of m-tuples of order m such that for any
(91,92,...em)ceh, the polynomial a, is selfparaconjugate Schur.

Theorem 2.2.2.5: Let a be a self-paraconjugate Schur polynomial. There exists

a sequentially almost complete set © of k-tuples of order (k-1) such that a = 0
for any z; = exp(jei); 059i<2n, i=1¢tok, and (91,92,...ek)ce.

Proof: From theorem 2.2.2.4, the polynomial a1 obtained by freezing (k-1) of
the k variables, say z;, i=l1 to (k-1) on 2z, = exp(36,) ; 0<8,<2n is
selfparaconjugate Schur for any (91'92"°-3k-1’°ek-1' where 8 _1 is a
sequentially almost complete set of order (k-1). Since the polynomial Q.1 =
ak~1(zk) is self-paraconjugate Schur, ak_lfo for |zk|<1 as well as for lzk|>1,
and thus a has zeros on Izkl-l only. Therefore, there is a seqguentially
almost complete set 6 of k-tuples of order (k-1) such that a = 0 for
(e ,92,...ek)ee.

We refer ahead to definition 2.2.3.1 for the statement, but not the proof of
the following theorem.

Theorem 2.2.2.6: A widest sense Schur polynomial a can be expressed as a
product of a selfparaconjugate Schur factor and a scattering Schur factor.

Proof: Let a=de, 4=df, where d is the gcd between a and ;, and thus e and £
are prime polynimials. From property 2.B6 in the appendix then 4 = vd. i.e.,




d 1is discrete self-paraconjugate. Since a is widest sense Schur so are both d
and e. Thus d is selfparaconjggatg _Schur.  We further claim that e is
scattering Schur. Clearly, d.f = a = d.e = y.d.e and hence f = ye, where the
second equality follows from property 2.Bl in the appendix. Therefore, if e
and e had a common factor then e and f would not be relatively prime.

The following theorem characterizes selfparaconjugate Schur polynomials.
Theorem 2.2.2.7: A polynomial a is self-paraconjugate Schur if and only if ax0
for [z|<1 as well as for |z|>1.

Proof: Necessity: a0 in [z|<1 by definition. Furthermore, since a is
discrete self-paraconjugate, a zero of a in |z|>]1 would imply existence of a
zero of a in [z|<]l, and is hence excluded.

Sufficiency: If a » 0 for [z|<1, then by theorem 2.2.2.6 a is product
of a self-paraconjugate Schur factor and a scattering Schur factor. However, a
factor of latter type, due to theorem 2.2.3.6 must have a zero in [z|>]l, thus
implying a zero of a in {z|>1, which is excluded.

Theorem 2.2.2.8: The irreducible factors of a selfparaconjugate polynomial a
are also selfparaconjugate Schur.

Proof: Obviously, the irreducible factors of a are widest sense Schur. Thus,
due to theorem 2.2.2.6, these factors are either selfparaconjugate Schur or
scattering Schur. However, presence of a factor of the latter type, due to
theorem 2.2.3.6, would indicate that a has a zero in |[z|>]1, which is ruled ocut
in theorem 2.2.2.7.

Lerma . 2.2.2.9: Let a be a selfparaconjugate Schur polynomial involving the
variable z;. Then deqx as= deg)‘azi for A= 1 to k.

Proof: If =i the proof is obvious from the definition of a, . Next, let A#i,
and a be written as in (2.1.1). Since a is selfparacon;ug&te Schur, and in
particular widest sence Schur, a, cannot have a factor zZy for any )\, beacuse
otherwise a would be zero for zA-O, z;=0, and arbitrary values of the remaining q
variables. Therefore, 3, must contain a monomial not involving z;‘l. Since from

10
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property 2.B8 in the appendix, a vao nz, ., the Aast stated property of ao

i,
yields that degx -nx Furthermore, sinké 1n az = vfo bvzl, bni = -n,. ani we
have degxbz - degxa =n,. Consequently, degxaz.-nx.
i
2.2.3 Scattering Schur Polynomials:

pefinition 2.2.3.1: A polynomial a is called scattering Schur if a ¥ 0 for

|zf<l,(i.e., a is widest sense Schur) and if a and a do not have any common
factor.

The term discrete scattering Hurwitz has earlier been used for the above class
of polynomials in [7),[8].

Theorem 2.2.3.2: If a is a scattering Schur polynomial, then a cannot have a

discrete selfparaconjugate factor.

Proof: If a had a factor d i.e., a = de, with & = od, where a is a constant,
then a = de = doe, and thus a and a would not be relatively prime.

Corollary 2.2.3.3: A scattering Schur polynomial a=a(z) in one variable is a
strict sense Schur polynomial i.e., a0 for {z|<1.

Theorem 2.2.3.4: Let a be a scattering Schur polynomial in k-variables then the
polynomial a‘ in (k-1) variables obtained by freezing any one of the variables,
say z;. with z, = exp(jel); 0591<2n, is also scattering Schur for an almost
complete set of values of 6.

Proof: Let a’(z’) = a(z,,,2’) with 2z, = exp(j6,,), where 8,, is a fixed value
of 91 in Qgel<2n. Due to theorem 2.2.1.2, a' is either identically equal to
zero or is a widest sense Schur polynomial. However, in the former case
(z-zlo), which is selfparaconjugate Schur, is a factor of a, and thus excluded
due to theorem 2.2.3.2.

Next, the polynomials a and ; are relatively prime by definition 2.2.3.1,
and thus the (k-1) variable polynomials a’' = a(2’') = [a] and l;] -
with zlo-exp(Je 0), due to property 2.A4 in the appendix, ére Qelatxvely bri&g
for an almost complete set © of values of 810 However, since from property
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2.87, (a} =2 1a' nz 1, p; 20, we have that a’ and a’ are relatively
z1=219 10 im2 i i
prime polynomials, and thus a’ is scattering Schur for all eloee.

Extending the above result via a repeated application we obtain the following:
H Theorem 2.2.3.5: Let a be a scattering Schur polynomial and let L be the
polynomial obtained from a by freezing m, m<k of the k-variables, say 2, i=1
to m on z; = exp(jei), Qgei<2u. Then a3, is also scattering Schur for any
choice of the m-tuple (81,62,...9m)eeh, where eh is a sequentially almost

complete set of m-tuples of order m.

Theorem 2.2.3.6: A scattering Schur polynomial a must have zeros in [z{>l.

Proof: Let a1 be the polynomial obtained from a by freezing (k-1) of the
k-variables, say ti, for i = 1 to (k-1) on z; = exp(j6;) 0<6,<2n. Then due to
theorem 2.2.3.5, there exists a sequentially almost complete set &1 of order
(k=1) such that for any (6,,6,,...8, ;)€ _, the polynomial a, , is scattering
Schur, and is thus, in view of corollary 2.2.3.3, a strict sense Schur
polynomial in the variable z, only. Therefore, a1 has zeros in |zk|>1.
Consequently, a has zeros for lzil =1, i=1to (k-1) and lzk|>1. Next, by
continuously moving the variables z; in the regions |zi|>1 for i =1 to (k-1)
by sufficiently small amounts, and invoking the continuity property of zeros of
a polynomial as a function of its coefficients, it follows that a has zeros in
|z|>1.

Theorem 2.2.3.6 can, in fact, be strengthened in the following form.
Corollary 2.2.3.7: An irreducible polynomial a is scattering Schur if and only
if a # 0 for |z|<1 and a has at least one zero in |z|>l.

Proof: Necessity of the theorem is obvious in view of theorem 2.2.3.6. To
prove sufficiency, let us note that a is widest sense Schur, and therefore, by
virtue of its irreducibility and by theorem 2.2.2.6 is either a
selfparaconjugate Schur or a scattering Schur polynomial.\ However, due to
theorem 2.2.2.7, a self-paraconjugate Schur polynomial cannot have zeros in
|z|>1. Thus, a is a scattering Schur polynomial. o
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Theorem 2.2.3.8: Let a be a widest sense Schur polynomial. Then a is also
scattering Schur if and only if the zeros of a on |[z|=1 does not form a
sequentially almost complete set of order (k-1).

Proof: Sufficiency: Assume for ‘contradiction that d is the nonconstant
greatest common factor between a and a. By property 2.B6 in the appendix d is
a discrete self-paraconjugate polynomial. Invoking theorem 2.2.2.5, it follows
that a = 0 for zi-exp(jei), Osei<2u, for i = 1 to k with (91,62,...ek)e9, where
® 1is a sequentially almost complete set of order (k-1). However, this latter
conclusion contradicts the fact that the zeros of a on |2|=1 cannot form a
sequentially almost complete set of order (k-1). The polynomial d is therefore
a constant, thus proving the scattering Schur property of a.

Necessity: If a=0 for z; = exp(jei), 058i<2u, i=1tok with (el,ez,...ek)ee,
where © is a sequentially infinite set of ordﬁr (k-1), then a(exp(j8;),
exp(36,),... exp(38,)) = a (exp(j8;),...exp(j8,) U exp(jn;0;)=0, where n, =
degia, thus implying that a and a would have égbuentially infinitely many
common zeros of order (k-1) on {z{ = 1. Property 2.A3 in the appendix then
implies that a and a would have a common factor, which is impossible if a is
scattering Schur.

Theorem 2.2.3.9: (a) Factors of scattering Schur polynomials are scattering

Schur. (b) Conversely, products of scattering Schur polynomials are also
scattering Schur.

Proof: (a) Let a=bc be a scattering Schur polynomial. Obviously, then b and c
are widest sense SEthv beacuse a is so. Furthermore, since due to property
2.B1 En the appenix, a=bc, there cannot be a nontrivial common factor between b
and" b or between c and E, beacuse otherwiswe a and ; would not be relatively
prime, and the scattering Schur property of a would thus be violated.

Therefore, b and c are both scattering Schur polynomias.

(b) Conversely, If a~=bc with b and c scattering Schur, then clearly a is widest
sense Schur. Due to theorem 2.2.2.6 a is the product of a scattering Schur
factor- and a selfparaconjugate Schur factor. However, irreducible factors of
the latter type are also selfparaconjugete Schur due to theorem 2.2.2.8, and
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would thus be contained in either b or ¢, which in view of theorem 2.2.3.2,
violates the scattering Schur property of b or c. Therefore, a is a Scattering

Schur polynomial.

Theorem 2.2.3.10: Let a be a scattering Schur polynomial in k variables, then
the (k-1) variable polynomial a’ obtained by freezing any one of the variables,
say z, in lzi|<l is also scattering Schur.

Proof: Assume i = 1, and 2, to be frozen at Zy = 219- Obviously, a’ = a'(z')
= a(zm,g') is widest sense Schur. We gnly need to show that a’ and a‘' are
relatively prime polynomials. If a’ and a’ are not relatively prime then the
greatest common factor d between them is by property 2.B6 discrete
self-paraconjugate, and thus is a selfparaconjugate Schur polynomial. Invoking
theorem 2.2.2.5 it then follows that d=0, and thus a = 0, for z, = exp(jei): 0
< 6i<2u for i = 1 to k, with &' = (62,93,...ek)c9', where ©’ is a sequentially
almost complete set of order (k-2). Since a = 0 for z; = exp(jei) 059i<2n, i=
2 to k with 8’¢ © and for 2y = 21q theorem 2.2.1.3 along with the fact |z,,|<1
yields that a = 0 for z; = exp(jei). 0_<_ei<2n, with 6'¢ ©’ and arbitrary z.
Therefore, by restricting zyonz = exp(jel) it is possible to assert that a =
0 for z, = exp(jei), 0_<_ei<2n, for all 9_-(91,62,...81() e ©, where 8 is a
sequentially almost complete set, and thus a sequentially infinite set of
k-tuples of order (k-1). This latter conclusion, in view of theorem 2.2.3.8
violates the scattering Schur property of a. The polynomials a and a’ are thus
relatively prime,

Lemma 2.2.3.11: If a is a widest sense Schur polynomial and b a further
polynomial such that |b/aj<l for 2z on |z|=1 whenever ay0, then |b/a|<l for
|2|<1. Furthermore, if |b/aj=1 for some z in [2|=1 then it is impossible to
have |b/a|=1 for some 2z in |z|<] unless b/a is independent of zZ; for all i
i.e., a constant.

Proof: Assume for the purpose of induction that the theorem is true for
polynomial and rational functions in (k-1) variables. Then due to theorem
2.2.2.3, the polynomial a’ in (k-1) variables obtained by freezing zy in a at
%9 on |2|=1 is widest sense Schur for almost all (i.e., except finitely many)
choices of 250 ©On jz|=1. Also, let us define the (k-1) variable polynomial
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d'=d’ (2’ )=d(z;,,2). Now since a’=a’(z’)s0 implies a(z,,,z')#0, if |b/aj<l for
jz|=l, whenever a0 then we have that |b’/a’|<1 for |z’|=1, whenever a’‘y0.
Consequently, by invoking induction hypothesis we may assert that |b’/a’|<l for
{2 1<1.

Consider next the polynomial al-a(zl,_z_b) and bl-b(zl,z'), where _z_b is
considered frozen in |2’|<l. Obviously, a1#0 in |zl|<l. Furthermore, from the
conclusion of the last paragraph it follows that ial/bllsl for almost all z, on
|zll-1. Thus, via an application of the known maximum modulus principle for
rational functions of one variable, we conclude that |b1/a1|_<_1 for |z1|<l.
Since 3_6 is chosen arbitrarily in |z’ |<1, the latter conclusion yields |bsa|<l
for |z|<1.

Finally, the last statement of the present theorem follows from the the known
result [9]) that a function of several complex variables cannot reach a maximum

at a point interior to the domain of holomorphy unless it is a constant.

Theorem 2.2.3.12: (a) If a is a nontrivial scattering Schur polynomial then

la/al|<l for |z|<l. (b) Conversely, if b and a are relatively prime polynomials
such that |b/aj<l for |z|<l then a is either a scattering Schur polynomial or
a nonzero constant.

Proof: (a) Since J|asal=1 for |z|=1, whenever ay0, the result follows
immediately from lemma 2.2.3.11.

(b) Clearly, ap0 for |z|<1l, beacuse if a(z;)=0 with |z,|<1 then in order for
|b/aj<l to be satisfied we would necessarily have b(go)-zl i.e., the rational
function b/a would have a nonessential singularity of second kind at Z5-
Consequently, b/a would also have a singularity of first kind in an arbitrarily
small neighbourhood of 2z, lying entirely within {2|<1 [10], thus violating the
condition |b/aj<l for |z|<1.

Next, we claim that if a is not a constant, and if a(go)-o for some z, with

)
| _z_ol-l, then b( 50)-0. To substantiate this claim consider the open connected
set 2 of points 2z lying in a neighbourhood of 2z, as well as inside |z|<]. %

Obviously, |b/aj<l and a0 for zeQ. It then follows by invoking the continuity
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of the function b/a in 2 that if a(go)-o then also have b(Eo)-O. Now, since the
polynomials a and b are relatively prime the set of zeros common to them
cannot, due to propertty A3, form a sequentially almost complete set of order
(k=1). Thus, the set of zeros of a on |z|=1l does not form a sequentially almost
complete set of order (k-1). It then follows by invoking theorem 2.2.3.8 that a
is a scattering Schur polynomial.

Corollary 2.2.3.13: Let the rational function p=b/a be such that a is widest
sense Schur and |p|<1l for all those z on |z|=1 for which a¥0. Then, if p-bo/ao
in irreducible form then 3, is scattering Schur.

Proof: Follows immediately from lemma 2.2.3.11 and theorem 2.2.3.12.

lé
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! 2.3. ELEMENTARY PROPERTIES OF (k-D) RATIONAL DISCRETE POSITIVE FUNCTIONS:

Do Definition 2.3.1: A rational function { will be called discrete positive if Re
b Z >0 for |z|<l.

: A discrete positive function { = jC, where C is a real constant, is said to be
trivial. All other discrete positive functions are said to be non-trivial.

Definition 2.3.2: A discrete positive function {=b/a with a, b polynomials,
will be said to be a discrete reactance function, if in addition, it satisfies:
(b/a) +(bs/a) = 0.

Lemma 2.3.3: let L' = L’(2’) be the well defined rational function in (k-1)
variables obtained by freezing in the k-variable rational function { = L(z) the
variable z, on lzll-l. Then if { is discrete positive real so is {'.

Proof: From definition 2.3.1 via the use of arguments similar to those used in
the proof of lemma 2.5.11.

Theorem 2.3.4: A discrete positive function { is non-trivial if and only if
Rel > 0 for |z]|<1.

Proof: If { is a trivial positive function, then Rel = 0 for all z, and in
particular for |z]«1. On the otherhand, if T involves one of the variables,
say 1z, then let us freeze all other variable z' = (22'23""zk) at z' = 36 in
[2°i<1 in { and let the resulting function be called {’. Then {’', due to lemma
2.3.3, is a non-trivial discrete positive function of one variable zy only, for
which it is well known that Rel’>0 for |zll<1. Since 36 is chosen arbitrarily
in |z|<l, the present theorem is established.

Theorem 2.3.5: If UI=b/a, with a and b polynomials, is a discret positive
function in irreducible form then both a and b are widest sense Schur
polynomials. Furthermore, neither a nor b may have selfparaconjugate Schur
factors of multiplicity larger than one.

Proof: Consider the nonconstant rational function p = (1-L)/(1+40) =
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(a~b)/(a+b), which is necessarily in irreducible form. We have Rel > 0, and
consequently |p|<l for [z{<l. Therefore, due to theorem 2.2.3.12(b), (a+b) is
scattering Schur. Thus, p is holomorphic in |z|<l, and consequently, the
maximum modulus theorem for functions of several complex variables [9) implies
that |p|<1l in |z|<)l. Now, if b(zo)#o but a(zo)-O or b(zo)-o but a(zo)¢0 with
|§0[<l then we would obviously have lp(go)lnl, which is impossible.
Furthermore, if for some 2z with |§0|<l, a(zo)‘- b(zo)-o, then p would have a
nonessential singularity of the second kind at z = zy. However, » would then
also have a sinqularity of first kind in an arbitrarily small neighbourhood of
z=z, contained in |z|<1 [10]), which is ruled out by [p{<1.

To prove the second part, let b = e.f" where e,f are polynomials such that
f 1is discrete selfparaconjugate and does not divide e. Then due to theorem
2.2.1.3 there exists a sequentially almost complete set ©' of (k-1) tuples of
order (k-1) such that the one variable polynomial b'-b'(zl) in the variable z,
obtained by freezing in f the remaining variables at z; = exp(j6;), i = 2 to k
with €'=(6,,8,,...6,)¢0’ is also widest sense Schur, where ' is a sequentially
almost complete set of order (k-1). Let a’ and f’' be the polynomials obtained
by freezing respectively in a and f the variables 2, at z; = exp(jei) for i = 2
to k. Then, since the pair (a,f) is coprime, due to property 2.A4 in the
appendix, there exists a sequentially almost complete set ©" of (k-1) tuples of
order (k-1) such that for any choice of g'-(ez,e3,...ek)ee", the pair (a’,f’)
is also coprime. Therefore, if ©'¢(©’n @") then the one variable rational
function C'(zl) - b’(zl)/a'(zl) is well defined, and in its irreducible form
the numerator polynomial b’ contains the factor f'-f'(zl) of multiplicity n.
Note that the polynomial £’, due to theorem 2.2.2.3, is selfparaconjugate
Schur. Furthermore, due to lemma 2.3.4, ' is a discrete positive function in
one variable, and is thus devoid of multiple zeros on the unit circle lzll-l.
Consequently n=1,

Assertion 2.3.6: Let { = b/a be a discrete positive function. Then { is a
reactance function if and only if degib - degia for all i = 1 to k and b/a = -
bra.

Proof: let L = d/c in irreducible form, where b = ed and a = ec, e being the
g.c.d between a and b, Then due to property 2.Bl in the appendix, b/a = b/a

is




-~ k n_.-n
implies d/c = - d/c = -(d/c) 0 2 ci “di , where n_. = deg,c, nj. deg d for i =

1 to k. Also, due to properiy 2.82 in the appendix e, and d does not contain a
factor z; for any i. Furthermore, c and d, being numerator and denominator of
irreducible discrete positive function, cannot have a zero in |z|<]l due to
theorem 2.3.5, and thus cannot have a factor z; for any i. Consequently, Ny =
N4j for all i, therefore, deg b= degle + Ny ‘-‘deg e+n, = gegia for all i =
1 to k. Furthermore, b/a = d/c = - d/c = - (d.e)/(c. e) - - b/a, where the last
equality follows from property 2.Bl in the appendix. Conversely, if degib =
degia for i = 1 to k, then obviously b/a = b/a. Thus, if T =Db/a is a discrete
positive function with b/a = - b/a, we would also have b/a + b/a = 0 implying
that { is a reactance function.

Notice, however that a discrete positive function can have a non-zero
difference in partial degree between its numerator and denominator. Consider,
(= 1+[(1—zlzz)/(1+zlz2)] = [l+2122]-1, which is a discrete positive function.

Theorem 2.3.7: If a rational function { = b/a satisfies: (i) a is scattering
Schur (ii) Re QX0 for |z|=l1, whenever a#0 then Rel > 0 for |z| <1 i.e., L is a
discrete positive function.

Proof: Let us assume for the purpose of induction that the theorem be true for
(k-1) variables. Also, let the polynomial a'=a’(z’)=a(2z,,,2’) and the rational
function C'-C'(g')-((zlo,g') be defined by fregzing respectively in a and in
the variable 2y at 2)9 O |21|-1. Since a is scattering Schur, due to theorem
2.2.3.4, a’' is scattering Schur for an almost complete set of values 2,9 ON
|zy[=1. For those z' on |z'|=l for which a’#0, we have a(z,,,z')#0, and
consequently, due to condition (b) of the present theorem, Re('-Re((zlo,g')zo.
Then due to te induction hypothesis it follows that Re(’'>0 for |z’|<l for an
almost complete choice of 2,0 O0 |zl|-1..

Consider next al-al(zl)-a(zl,z') and Clscl(zl)-C(zl,gé), where 2y is frozen in
|§6|<1. Then from the conclusions of the last paragraph it follows that the
one-variable rational function Cl satisfies Reclgo for an almost complete set
of values on lzll-l. Furthermore, a,. due to theorem 2.2.3.10 and corollary
2.2.3.3, is a strict sense Schur polynomial in zZ, only. Therefore, from a
classical one-variable result it follows that aeclgo for |z1|<1. Since 56 is
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arbitrarily chosen in |2’|<1, the last condition yields that Rel>0 for |zI<1,
thus completing the proof of the present theorem.

Remark 2.3.8: The above theorem, in the one variable case, can be obtained from
an application of lemma 2.2.3.11 with the nonrational function exp(-).
However, since a multidimensional version of lemma 2.2.3.11 wvalid for
nonrational functions is not known to us, a separate proof of theorem 2.3.8 is
needed.

Theerem 2.3.9: If UI=b/(ac) is a discrete positive function in k-variables 2,

where a is a scattering Schur polynomial and ¢ is a reactance Schur polynomial
in one variable cnly then { can be decomposed as {=(c’/c)+(a‘’sa), where c’/c is
a one variable discrete reactance function and a’/a is a discrete positive
function in k-variables z.

n

Proof: Let o= [ Cie where c, -(z ui) with Ia |=1 and @ 's are necessarily
distinct. Consialr the ratlonal functxon K (z ) = [(z —a )b/ac] . which is

obviously holomorphic in |z’ |«1. Furthermore, for all 56 WIth | }<1 K ( 1) is
the residue of the one-variable discrete positive function Cl-cl(z -((z 'Zh)
at  zy=o, and is thus real and positive. Since a function of several complex
variables, which is real and holomorphic in a domain must be equal to a
constant  ye have that K,(2’)=K =constant. Also, since the polynomial
h=h(z)=b-a I K, c/c satisfies h(av,g')-o, (zl'“v) must be a factor of h for
each v 1 ; h-ca' for some polynomial a‘=a’(z). It then follows by
straaghtforward algebraic manipulation that I=(c'/c)+(a'sa), where
c’'= [ K, c/t . Clearly, c’/c is a one-variable discrete reactance function, and
thefeiore, Re(c /c)=0 for |z1|-1 whenever c#0. Since { is a discrete positive
function, Rel20 for |z|=1, whenever { is reqular. Therefore, Re(a’/a)>0 for
jz|j=1, whenever a#0. It then follows via the use of theorem 2.3.8 that a’/a is
a discrete positive function.

Theorem 2.3.10: Let I=b/a, where a and b are relatively prime polynomials. Then
U is a discrete positive function if and only if (a+b) is scattering Schur, and
Rel>0 for |z|=1, wherever { is regular.
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Proof: Consider the rational function p=(1-{)/(1+{)=(a-b)/(a+b) in irreducible
form and notice that Rel>0 if and only if jp|<1.

Necessity: Since Rel>0 for |z|<l we have |p|<l for |z|<l. Therefore, due to
theorem 2.2.3.12(b), (a+b) is scattering Schur. Finally, the fact that Rel>0
for all regular points of { on |z|=1 follows from lemma 2.3.3.

Sufficiency: If a+b#0 but a=0 for some z then |p|=1. On the other hand, if
a+b#0 but a#0 for some z=z, with |z,|=1 then o is regular at 24, and
consequently, ReC(EO)ZO, thus implying lp(EO)ISl. Therefore, |p|<l for [z]=1,
whenever a+b#0 i.e., p is holomophic. The result then follows from lemma
2.2.3.11 via the use of the fact that (a+b) is scattering Schur.

We have the following important result.
Theorem 2.3.11: If a is a widest sense Schur polynomial involving one of the k

variables, say z;, then a, /a is a discrete positive function.
i
Proof: Assume i = 1. Since a is widest sense Schur the polynomial a in one
variable zy obtained by freezing in a the variables zi,i-z to k inside |zi|< 1,
is widest sense Schur. The result then follows from property 2.C3 in the
appendix by noting that Re(Ez /a) = Re(a, /a)>0 for |z|<1.
1 1

Theorem 2.3.12: If a is a selfparaconjugate Schur polynomial involving one of

the k variables, say i, then a, /a is a discrete reactance function (not

necessarily in irreducible form). 1

Proof: Assume i = 1, and a = vya. The fact that a, sa is a discrete positive

function has been proved in theorem 2.3.11. If a is1

expressed as a polynomial
in zy with coegficients as polynomials in 2z’ i.e., in the form (2.1.1) with i =

1, then a, = Elbvz; , where bv = (n1-2v)av for \-0,1,...n1. Furthermore, from

1 w0
lemma 2.2.2.9 we have that degiaz = degia =n; for i = 1 to k. Therefore,
- n- _, k n, n, ~ v k ny -
a, =( T'b2,7) Mz~ = (L~ (n-2vja, _ 2)( 027" (via the substitution b
1 w0 i-ln v=0 1 in2

n
21 —(n1-2v)yav 2’ (via the use of equation (2.A1)=~¥ tlbvz“-

= (n,-2v)a ) =
1 v =0 =0




- vya_ . Therefore, (a_ s/a) + (; )/; = 0. The fact that a_ /a is a discrete
% % 5 Z

reactance function then following by invoking assertion 2.3.6.

Corollary 2.3.13: If a is an irreducible widest sense (discrete

selfparaconjugate) Schur polynomial involving the variable z; then a, /a is a
discrete positive (reactance) function in irreducible form. :

Proof: Immediately follows from theorems 2.3.11, 3.12 and property 2.C2 in the
appendix.

Theorem 2.3.14: If a is a widest sense Schur polynomial involving the variable

z; then the polynomial azi is also widest sense Schur.
Proof: let a, /a= c/b, a = bd and a, = cd, d being the g.c.d between a, and
a. Then due Eo theorem 2.3.11, ¢/b 1§ discrete positive and consequently, due
to theorem 2.3.5, b and c are widest sense Schur polynomials. Furthermore, the
polynomial d, being a factor of a, which is widest sense Schur, is also widest
sense Schur. Thus a, = c.d is widest sense Schur.

i

Theorem 2.3.15: i1f { = bs/a is a nontrivial discrete positive function in

irreducible form then f = xa + jyb is widest sense Schur for all real x and y
not simultaneously =zero. Conversely, if the polynomial f = xa+jyb is widest
sense Schur for all real x and y not simultaneously zero then either bsa or
{(~b/a) is a discrete positive function.

Proof: If b/a is a nontrivial discrete positive function in irreducible form
then due to theorem 2.3.5, a#0, b#0 for |z|<l. Consequently, if f(go) = 0 for
some  z, in [z]<l then b/a = j(x/y), implying Re(b/a) = 0 for z = 2z, in |z|<1.
The latter conclusion, in view of theorem 2.3.4 contradicts with the fact that
(b/a) is a nontrivial discrete positive function. Conversely, if f is widest
sense Schur for all real x and y except x = y = 0, then a and b are also widest
sense Schur, because if a(go) = ) (or b(go)-O) with |§O|<l, then f(go) = 0 for
y = 0(or x = 0) and for arbitrary x(or y). Thus, Re(b/a) is a continuous
function of 3z in |z|<1l. Furthermore, Re(b/a) # 0 for any z in |z|<]l, because
otherwise b/a = -~ jy/x,
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i.e., xa+jby = 0 for some real x and y not simultaneously zero. Thus, by
continuity of bs/a in |z|<l, if Re(b/a)>0 (or <0) for some z in |z|<1, then
Re(b/a)>0 (or < 0) for all |z|<l.

Corollary 2.3.16: The rational function { = b/a, where b and a are relatively

prime polynomials, is a nontrivial discrete positive function if and only if

(x2a2+y2

y = 0.

bz) is a widest sense Schur polynomial for all real x and y except x =

2a2+y2b2)-(xa+jyb)(xa—jyb), the above corollary clearly follows

Proof: Since (x
from theorem 2.3.15 and the obvious fact that a polynomial is widest sense

Schur if and only if its factors are widest sense Schur.

We note that the above result is a discrete k-D counterpart of a result
originaly proved by Brockett (11} in the 1-D context. The k-D continuous
counterpart of corollary 2.3.16 is obtained in [5], however, via a proof
technique entirely different from the one presented here.

23

e IR



2.4. THE REACTANCE SCHUR AND IMMITTANCE SCHUR POLYNOMIALS:

Definition 2.4.1: A selfparaconjugate Schur polynomial a is said to be

reactance Schur if the irreducible factors of a do not occur with multiplicity
larger than one.

The following results immediately follows from the above definition.
Theorem 2.4.2: (a) Products of reactance Schur polynomials that are pairwise

relatively prime are reactance Schur polynomials. (b) Any factor of a
reactance Schur polynomial a is also a reactance Schur polynomial.

Proof: (a) Follows from the fact that the product of selfparaconjugate Schur
polynomials is also selfparaconjugate Schur. (b) We note that definition 2.4.1
and theorem 2.2.2.8 imply that the irreducible factors of a are
selfparaconjugate Schur, and are thus reactance Schur. The result then follows
by appealing to part (a) of the present theorem.

Theorem 2.4.3: (a) The numerator and denominator of a discrete reactance

function, written in irreducible form, are always reactance Schur polynomials.
(b) Conversely, each discrete reactance Schur polynomial b is the denominator
{(and consequently the numerator) of a discrete reactance function in
irreducible form.

Proof: (a) If U=b/a is discrete reactance function, and in particular a
discrete positive function in irreducible form, then due to theorem 2.3.5, a is
a widest sense Schur polynomial devoid of multiple discrete selfparaconjugate
factors. Furthermore, since a is.a widest sense Schur it cannot contain z; as
a ‘factor for any i. Thus, degia-degia for i = 1 to k. Since from assertion
2.3.6 we have b/a = - b/a, in irreducible form, we must have a = ya, where vy is
a constant i.e., a is selfparaconjugate Schur. Since irreducible factors of a,
due to theorem 2.2.2.8, are also selfparaconjugate Schur, they must occur in a
with multiplicity equal to one. Therefore, a is reactance Schur. Similar
argquments apply to b.

(b) Lot bi' i=1,2,...n be the nontrivial irreducible factors of b, which are
also reactance Schur due to theorem 2.4.2. Let bi involve the variable Zy(i)
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n
and consider the rational function ¢ = [ ¢ , where ¢ = (b, )A(l)/b Since

from theorem 2.3.12, each ¢ is a dzscréfé reactance functﬁon, their sum $ is

also a discrete reactance functxon Let ¢ = c/b, then ¢ = ifl ((b, )A(l) . n r
v#i

bv)‘ It then follows by appealing to property 2.C2 in the appendix that ¢ and

b are relatively prime polynomials.

Theorem 2.4.4: If the polynomial a is nontrivial and is scattering Schur, then

the discrete paraeven and the discrete paraodd parts of a respectively denoted
by ae-(a+a)/2 and ao-(a—a)/2 are relatively prime reactance Schur polynomials.

Proof: Since a is scattering Schur the rational function p-;/a, due to
definition 2.2.3.1, is in irreducible form and satisfies {p|<l for |z]<l.
Therefore, if { = (l-p)/(1l+p) = (a—;)/(a+;), then { is a discrete positive
function (i.e. Rel > 0 for |z|<l) in irreducible form. Consequently, due to
theorem 2.3.5, both a, = a+; and a3 ~a- ; are widest sense Schur. The facts
that a, and ~a, are respectively paraeven and paraodd follows from property
2.810. Therefore, a, and a, are selfparaconjugate Schur. Furthermore, by
appealing to the second part of theorem 2.3.5 it follows that irreducible
factors of a, and 3y which by virtue of theorem 2.2.2.8, must be
selfparaconjugate Schur, must not occur with multiplicity higher than one.

Therefore, ag and a, are reactance Schur polynomials.

It is now possible to derive the converse of theorem 2.4.4.
Theorem 2.4.5: If b is a discrete paraeven (or discrete paraodd) reactance

Schur polynomial then there exists a discrete paraodd (or discrete paraeven)
reactance Schur polynomial ¢, relatively prime with b, such that (b+c) is
either a nonzero constant or a nontrivial scattering Schur polynomial.

Proof: Consider the irreducible discrete reactance function { = c/b, the
existence of which has been demonstrated in theorem 2.4.3(b). Since due to
assertion 2.3.6 we have (c/b) + (8/5) = 0, b = + b implies c = : c. Thus, if b
is paraeven (or paraodd) then c is paraodd (or paraeven). Furthermore, the
rational function p = (1-0)/(1+4) = (b-c)/(b+c) is irreducible form, and
satisfies |p|<<1l for |z|<l. Consequently, due to theorem 2.2.3.12(b), (b+c) is
either a nonzero constant or scattering Schur polynomial.
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In the above theorem it is indeed possible to have b+c = constant. Consider b
=14+ Z,25, C = l-zlzz.

The following is an yet alternate characterization of reactance Schur
polynomials.

Theorem 2.4.7: let a be a selfparaconjugate' Schur polynomial. Then a is

reactance Schur if and only if the set of (k+l) polynomials a,a, .a, ,...a, do
1 ®2 k

not have a proper common factor.

Proof: In view of property 2.C2 in the appendix, it follows that the
irreducidble factors of a are simple if and only if the set of (k+l)
polynomials a, a, ,...a, do not have a proper common factor. The result then
follows by appeal}ng to Ehe definition 2.4.1 of reactance Schur polynomials.

Definition 2.4.8: A polynomial a is said to be immittance Schur if it is the
product of a scattering Schur polynomial and a reactance Schur polynomial.

The following result clearly follows.

Theorem 2.4.9: (a) Factors of immittance Schur polynomials are immittance
Schur. (b) Products of immittance schur polynomials that do not have a discrete
selfparaconjugate factor in common are also immittance Schur. (c) The least

common multiple of a set of immittance Schur polynomials is also immittance
Schur.

The following result is an obvious consequence of theorems 2.3.5.
Theorem 2.4.10: The numerator and denomiantor polynomials a and b of a discrete
positive function {=a/b in irreducible form are necessarily immittance Schur.

Theorem 2.4.11: If a is a polynomial involving z; and is immittance Schur then

the polynomial a, is also immittance Schur.
i

Proof: Let a, /a= b/c, with a, = b.d and a = c.d, where d is the gcd between
a, . Dueto tﬁeorem 2.4.9, d 1s 1m1ttance Schur. Since the polynomials b and
¢ lare relatively prime, the rational function b/c, due to theorem 2.3.5 is a
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" discrete positive function in irreducible form. Consequently, by virtue of

theorem 2.4.10, b is an immittance Schur polynomial. Let d contain a
selfparaconjugate Schur factor e. Since e is a factor of a, which is
immittance Schur, e occurs in a with multiplicity one. Now, if e involves z;
then L by property 2.C2, does not contain the factor e, which contradicts
a, = b.d. Therefore, d cannot contain e, and in particular, b and d do not
hade discrete selfparaconjugate factors involving z; in common. On the other
hand, if e does not involve z; then the multiplicity of e in a and a_, must be

z.
the same. Also, since a=c.d 1s immittance Schur, ¢ cannot contain a factor e.

Thus, b cannot contain the factor e, beacuse otherwise the multiplicity of e in
a, wbuld be larger than in a. Therefore, b and d cannot have a discrete
seifparaconjugate factor not involving 25 in common. Therefore, b and d cannot
have a common selfparaconjugate Schur factor, thus confirming the immittance
Schur property of a, = b.d in view of theorem 2.4.9.

i

Theorem 2.4.12: The denominator of a rational discrete positive function in

irreducible form is an immittance Schur polynomial. Conversely, every
immittance Schur polynomial is the denominator of a discrete positive function
in irreducible form.

Proof: The first half of the present theorem has already been proved in
theorem 2.4.10. To prove the second half let a = e.f, where e and f are
respectively the scattering Schur and reactance Schur factors of a (cf. theroem
2.2.6). Notice that e and f are relatively prime due to theorem 2.2.2.8 and
2.2.3.2, Since e is §cattering Schur, theorem 2.2.3.12(a) yields |é/e|<1 for
|z|<1 implying Re[l+(e/e)]>0 for |z|<l i.e., [1+(;/e)] is a discrete positive
function. Furthermore, since £ is reactance Schur, by virtue of theorem 2.4.3,
there exists a polynomial g, such that g/f is a discrete reactance function
(and thus a positive function) in irreducible form. Therefore, 1+(;/E)+(g/f) =
p/a, where p = e(f+g)+;f = (e+;)f+eg is a discrete positive function. It
remains to show that p and a=ef are relatively prime polynomials. Clearly, if
e and p had a factor in common, then e and (;f) would have a factor in common.
However, e, being scattering Schur, is relatively prime with ; , and cannot
have a factor in common with f as stated earlier. On the other hand, if £ had
a factor in common with p then it would have a factor in common with eg. Since
g/f is an irreducible rational function, this later situation implies that e
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L and f would have a factor in common, which is again impossible.
' an irreducible rational function.
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2.5. EXTENSIONS TO PASSIVE MULTIPORT SCATTERING AND IMMITTANCE FUNCTIONS:

The following results generalize the above discussion on the scattering or
immittance description of k-D discrete passive multidimensional systems to
multiport systems.

Definition 2.5.1: An (NxN) rational matrix HEH(z) is said to be discrete
bounded if H is holomorphic in |z|<1l and (Iy -HH" ) is nonnegative definite at
all reqgular points of H in the domain |zj<1.

We shall need the following extensions of lemma 2.2.3. &1 for further
developments to follows. Let us consider the function p=p(z)= L Ip (z)}, where
each CH -b (z)/a (z) with a, 1734 (2), b b (z) polynomials in k-éar1ables z. We
note that since p is not an analytxc functzon of z neither the maximum modulus
principle for functions of several complex variables [9) nor lemma 2.2.3.11 of
the present paper applies to p. However, the following result is true.

Lemma 2.5.2: Let p=p(2) be as defined above. If a;=a;(2) for each i=1,2...N are
widest sense Schur polynomials and o<1 for |z|=1, whenever ai#O for each
i=1,2...N, then |p|<1 for |z|<l. Furthermore, if p=1 for some z in [z(=l then
p<l for |z|<1l unless each o is constant.

Proof: Let p(go)zl with ’Eo|<l~ Consider the rational functions ti(E)-Cipi(E),
i=1,2...N where each Ci is a constant such that |Ci|'1' and ri(go) is a
positive real number i.e,, |op. (go)l-lri(go)l-ri(go). Also, conﬁider the
rﬁtxonal function R(z)= L (z) Obviously, then |[R(z2)(< T |f1(2)|'

tlp (z)|=p(2) for all z. Iﬁ éartxcular, IR(2)|<p(2)<1 for |2z]|=1, whén&ver a, ﬂO
¥5c each i=1,2...N. Thus, by invoking lemma 2.2.3.11 with R(z) it follows that
either |R(z2)|<1 for |z|<1 or R(z) is a constant. The first of the last two
situatiﬁns is,N however, in contradiction with the fact that
R(Eo)' T, (_0)- z |p ( l-p(z )21. On the other hand, if R(2) is a contant
then 1?1 follow§ that 1<|p( )l-IR(z )|={R(2)|<e(z) for all z. However, since
e(2)21 for |z|=1 whenever ai#O for each i, the last stated chain of weak
inequalities, in fact hold with inequalities replaced by equalities. Thus, we
have that p(2)=1 for all 2z. Furthermore, a comparison of the equality
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N
I |r (z)|= t i (z)|=|o(2)|=|R(2)| with [ r, (z)-R(z) clearly shows that r, (2)

fo} each 1-i 2...N is a real p051t1vé ﬁumber for all z. It then follows by
invoking a standard result from the theory of function of several complex
variables that ti(g), for each i, is a constant i.e., independent of z.

The following result can be viewed as a multiport extension of the maximum
modulus theorem for function of several compex variables useful in the present
context of passive or lossless networks.

Theorem 2.5.3: Llet H be an (NxN) rational matrix holomorphic in |z|<l and
(Iy - ) is nonnegative definite for [z|=l, wherever H is well defined. Then H
1s a discrete bounded matrix.

Proof: Let x-(xl,xz,.. xk) be any (1xN) constant vector and Y'(Yl'YZ""Yk) be
a (1xN) vector defined ¥1a y=Hx. Then 1t fol&ows frgm the nonnegative

definiteness of (I —HH ) that Z ly | L lxll . whenever H and thus, each
im] 1-1
yi-yi(g) is well defined on |z|=1. Clearly, the property of holomorphy in [z(<1l

is inherited by each yi from H. Then by invoking lemma 2.5.2, it follows that
N N

I lyil < I lxil for |z|<l. Since x is arbitrary the last conclusion
i=1 i=1 .t
yields that (IN-HH* ) is nonnegative definite for |z|<l, which when combined
t

*
with the fact that (IN-HH ) is nonnegative definite whenever H is holomorphic

in jz|=1, yields, in view of definition 2.5.1, that H is a discrete bounded
matrix.

Definition 2.5.4: A rational matrix of size (NxN) is said to be discrete k-D
lossless bounded if
(a) the entries Hij - Hij(g) of H = H(2) are holomorphic and
unimodularly bounded i.e., |Hij| <1 for |z] <1.
(b) HH=1I

N

We note that, as expected, the class of multidimensional discrete lossless
bounded matrices form a subclass of the class of multidimensional discrete
bounded matrices.
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Property 2.5.5: The denominators of each entry of discrete k-D lossless bounded

matrix H, when written in irreducible form, are scattering Schur polynomials.

Proof: Follows from theorem 2.2.3.12(b).

Property 2.5.6: Determinant of H can be expressed in irreducible form as det H

= d(as/d8), where a is a scattering Schur polynomial, and d is a unimodular
constant i.e., |d|-= 1.

Proof: Let det H = a/h , where a and h are relatively prime polynomials.
Since due to theorem 2.2.3.9, products as well as factors of scattering Schur
polynomials are also scattering Schur, from property 2.5.5 it follows that h is
a scattering Schur polynomial. Now, from definition 2.5.4(b) of lossless
bounded matrices it obviously follows that det Hdet H =1 i.e., (a/h)(&/R)=
1, thus implying (2.5.1a) below. Since in (2.5.1a), the polynomial h is
relatively prime with a, and h, being scattering Schur, cannot have a factor z;
for any i, the polynomial & must contain h as a factor i.e., (2.5.1b) follows,
where d is a polynomial in z.

»n - DA
adz =hhz , & = h.ad (2.5.1a,b)

Substitutuing (2.5.1b) in (2.5.1a) and considering the discrete paraconjugate
of the resulting equation it follows from Property 2.AS that ad=h. The latter
equality, in view of scattering Schur property of h and property 2.A6, imply
(2.5.2).

a.d=h (2.5.2)
Substituting for h from (2.5.2) into (2. 5 lb), we obtaxn dd-l which in turn
imply that d is a constant. Consequently, d-d and dd" =|d|=1. It then follows

from (2.5.2) that det h= a/h = a/(ad) = d(a/4).

Remark 2.5.7: Although a is scattering Schur a is not necessarily so.

Consider H = z.

Property 2.5.8: A discrete lossless k-D rational matrix H can be written as H
= P73, where P = P(z) is a polynomial matrix in 2z, and a is as in property
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2.5.6 above.

Proof: From cond1tlon (b) of the definition 2.5.4 and property 2.5. 6 it follows
that H = H'' = d"(Adj H)(8/a), which in turn imply that H = H = d(&/3) (AdjH).
Furthermore, it is straightforward to verify that §/@ = a/& for any polynomial

a. The last two equlities combined togather yield (2.5.3) in the following.
4.H = d.a.(Adj H) (2.5.3)

Due to property 2.5.5 and theorem 2.2.3.9(b) the entries of Adj H, when
written in irreducible form, have scattering Schur denominators, and therefore,
are holomorphic in |z|<l. Hence in (2.5.3) the right hand side is holomorphic
in |z|>1. The left hand side is either a polynomial matrix P=P(2z) or the
entries, due to property 2.5.5 and theorem 2.2.3.9(a), have scattering Schur
denominators when written in irreducible form. 1In the latter case, howgver,
4H, by virtue of theorem 2.2.3.6, is not holomorphic in |z|>1l. Thus, aH=P,
where P=P(z) is a polynomial matrix.

Multidimensional discrete lossless two-ports (i.e., N=2):

For N=2 by considering the fact that H = H >

follows from property 2.5.6.

» (2.5.4) and (2.5.5) below

* . - *
Hll =d (5/a)H22 ; 321 = -d (a/a)H12 (2.5.4a,b)

* ~ *
le = -d (&/3)321 ; sz = d (a/'a)H11 (2.5.5a,b)

We note that (2.5.4a) and (2.5.4b) are respectively identical with (2.5.5b) and
(2.5.5a) via the operation '~’. Also, Hy, in (2.5.5a) is holomorphic in |z2|>1,
whereas Hyo o due to property 2.5.5, must have scattering Schur denominator, and
therefore, due to theorem 2.2.3.6 has singularities in [z[>1. Hence the
denominator of 321 divides &, i.e., Hyy = c/4 (not necessarxly in irreducible
form). Thereforeh from (2.5.5a) it follows that H, = - a* (cra) i.e., Hy, =
d(2/&) = - (Z/8)z . It follows from (2.5.5b) via a similar aﬁgument that Hll
b/& (not necessarily in irreducible form), and sz - d(b/a)z . Thus, H can be
written as in (2.5.6) below.
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~ n
11P —dc Efa

H=" - n (2.5.6)
ajc +db gfa

Also, by considering the determinant of (2.5.6), it follows via the use of
property 2.5.6 that

~ -

bb + cc = aa (2.5.7)
~n, - ~n, -
Furthermore, since H,, = - dcz "/a and H), = dbz "/a are holomorphic in |z|<1,

it is necessary that deg,c < n, . and deg;b < n,. for i= 1 to k.

ai
The following result can be considered to be the discrete multidimensional
counterpart of the Belevitch canonical form for the representation of lossless
two-port networks well known in classical network theory. The multidimensional
continuous version of this result has recently been discussed in [2].

Theorem 2.5.9: A (2x2) rational matrix H = H(Z) is a lossless bounded matrix
if and only if there exists polynomials a,b,c and a unimodular complex constant
d such that:

(i) H can be written as (2.5.6)

(ii) & is a scattering Schur polynomial

(iii) a,b,c are related as in (2.5.7)

(iv) degiazdegib, and degiagdegic for all i=1 to k.

Proof: Only the sufficiency part of the theorem needs to be proved, the

neceesity being already established. We need to show that under the conditions’

stated in the present theorem, condition (a) and (b) of definition 2.5.4 are
satisfied. Straightforward computation along with (2.5.7) and the identitity aa
= 3Ja yields HH = I, which verifies condition (a) of definition 2.5.4.
Furthermore, a second use of the identity 8& = da along with (2.5.7) yields
(2.5.8) below.

~

(b/a)(B/g) + (cra)(&a) = 1, (b/g)(B/a) + (C/g)(E/ﬁ) =1 (2.5.8a,b)
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It clearly follows from (2.5.8b) that [b/a|% + |c/a|? = 1, and thus |b/a|gL,
|c/a|_a for ;zl-l whenever & ¥ 0. However, since & is scattering Schur, both
(bya)z and (a/a)z are holomorphic in

|2 < 1, and t is an application of lemma 2.2.3.11 yields that lﬂlzlgl and
|H22|51 for (2| < 1. Similar arguments with (2.5.8a) yield |Hll|51 and |H21lgl,
thus completing the proof of the present theorem.

Definition 2.5.10: An (NxN) rational matrix Z = 2(z) is said to be discrete
posxt1ve 1£ each entry 2, J(z) is holomorphic in |z|<l , and

Z(2) + 2" (z) is nonnegative definite for |z[<l.

Lemma 2.5.11: Let Z=Z(z) be a discrete posztlve matrix in k-variables. If Z(2)

is reqular at z, with l €1 then Z(_0)+(Z( )) is nonnegative definite.

Proof: 1If |_0|<1 then the result is obvious in view of definition 2 5.10. 1f
|30|5; but |§o|{1 then consider the neighbourhood N -{z ||z-§0||<e} of 2 such
that 2(z) is holomorphic in N_. The existence of such a N  follows from
property 2.AS5 in the appendix. Thus, in particular, each element of the
matrices 2Z(z) and 2" (z) are continuous functions of z in the conngcted set
Nen{g |zl<l}. Consequently, for any constant vectoE x, x(z+z )xt is a
continuous function of z in N. Furthermore, x(z+2” )x* 20 for zeNtdue to
definition 2. 5 10 It then follows by invoking the continuity of x(z+z )xt in
N that x(z+z )x 2 0 for 2=z, and for arbitrary x.

The following result is a generalization of theorem 2.3.5 to multiports.
Property 2.5.12: Let 2(3)'(zij(3)] be a discrete positive matrix. Then the
denominators of each entry zij(i)' when expressed in irreducible form, are

immittance Schur polynomials.

Proof: The fact that the denominators of each entry of Zij(g) is widest sense
Schur obviously follows from definition 2.5.10. Let Z'(zl) - 2(21'56)' where 24
is such that |§'ol-£ and let a=a(z) be the l.c.m of the denominator polynomials

K
111,11 denotes the Bucledean norm i.e., |lz||= L |zl
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of the elements of the matrix Z(z). Let v be the multiplicity of a
selfparaconjugate factor c¢ in the denominator of zij(g) in irreducible form.
Then due to property 2.A4, c'-c'(zl)-c(zl,z') will be a factor of multiplicity
v in the denominator of Zij(zl)-zij(zl,z') in irreducible form for any choice
of 2’y on |z'|=] from a sequentially almost complete set 2 of (k-1) tuples of
order (k-1). We note the polynomial a'-a'(zl)sa(zl,g'o) cannot be identically
zero for all 2 in @, beacuse otherwise a would be identically zero due to
property 2.A2 in the appendix. Consequently, there exists 25 € with |30|-l
such that Zi(zl) ift well defined. By invoking lemma 2.5.11 it then follows
that Z’(zl)+(Z'(zl)) is a discrete positive matrix function in the variable
zy only. Since c’ is a selfparaconjugate factor in the denominator of z!. it

1]
immediately follows from known one-variable results that v = 1.

Corollary 2.5.13: If 2=2(z) is a discrete positive matrix then the : -ast

common denominator of all entries Zij(_z_) of Z(z) is an immittance Schur
polynomial i.e., there exists an immittance Schur polynomial a such that aZ =
polynomial matrix.

Proof: Follows from the fact that l.c.m. of a set of immittance Schur
polynomials is also an immittance Schur polynomial (theorem 2.4.9c).
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2.6. RELATIONSHIP BETWEEN MULTIDIMENSIONAL SCHUR POLYNOMIALS AND
MULTIDIMENSIONAL HURWITZ POLYNOMIALS:

Let g(p) and a(z) be polynomials in the variables p and z respectively. Also
let the polynomial a(z) be obtained from g(p) via the bilinear transformations
p; = (l—zi)/(1+zi) for i=1 to k as:

1-2 1-22 l-zk k m
a(E) = g(1+zl'1+22'”'1+z ) n (1+zi) (2-6-1)

k i=l

where, m, = degig for i = 1 to k.

Then the polynomial a = a(z) has been called ({7]) the associate of the
polynomial g = g.p). On the otherhand if a and g are related as in (2.6.2)
below then g is called [7) the associate of a.

l-p1 l—p2 l—pk k n,
g(p) = a(1+p1,1+p2,...1+pk) iill(hpi) (2.6.2)

where degia =n, for i =1 to k.

General properties of associates of polynomials in z and in p variables and
their interrelations are discussed extensively in (7). We only note here that
two polynomials may not be associa&es of each L

other. Consider, for exmple, a = lEl(l+zi) and g = 2.

In this context it has been shown in {7] that any scattering Schur polynomial
is the associate of a scattering Hurwitz polynomial. Conversely, any
scattering Hurwitz polynomial devoid of factors (1+pi) for any i = 1 to k, is
also associate of some scattering Schur polynomial. Stated alternatively, the
bileaner transformation along with its inverse transformation sets up a
one-to-one correspondence between the scattering Schur polynomials and
scattering Hurwitz polynomials devoid of factors of the type (l+pi). The
scattering Hurwitz polynomials containing factors of the type (l+pi), when
bilinearly transformed via P; = (l-zi)/(1+zi) also yield scattering Schur
polynomials. This is in contrast to the situation discussed in (4], where it
is shown that the associates of strict sense Hurwitz polynomials need not be
strict sense Schur. 1In what follows answers to questions such these are sought
in the context of other classes of multidimensional polynomials.
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i We first note that the associate of a discrete selfparaconjugate polynomial is
necessarily selfparaconjugate i.e. if a = vya then g, = yg, but the converse is
not true i.e., the associate of selfparaconjugate polynomial is not necessarily
giscrete 5ﬁlfpafaconjugate However, it is true that if g, = yg then

a = vy.al zZ; 1, where r; = deg g - deg a = multiplicity of the factor (1+p )
in gq. waéver, if g is selfparaconjugate Schur then its irreducible factors
must also be so, and therefore, g cannot have a factor (1+p;). Thus, if g is
selfparaconjugate then its associate a is also discrete selfparaconjugate.

Furthermore, the associate of a widest sense Hurwitz polynomial is widest sense
Schur, and conversely the associate of a widest sense Schur polynomial is
widest sense Hurwitz (7). 1It, therefore, follows that there is a one-to—one
correspondence under the bilinear transformation and its inverse between the
selfparaconjugate Schur polynomials devoid of factors of the type (1+zi)and the
selfparaconjugate Hurwitz polynomials. Furthermore, selfparaconjugate Schur
polynomials containing factor of the type (1+zi), under the action of the
transformation p; = (l-zi)/(l+zi) i=1 to k necessarily yield selfparaconjugate
Hurwitz polynomials. Since it is known (7, lemma 9] that if two polynomials
are relatively prime their associates are also relatively prime the above
comments also apply, in particular, to reactance Hurwitz polynomials.
Furthermore, since the immittance Hurwitz (Schur) polynomials are products of
reactance Hurwitz (Schur) polynomials and scattering Rurwitz (Schur)
polynomials the following conclusions follow. The whole class of immittance
Schur polynomials devoid of factors of the type (142z,) can be identified as the
class of associates of the whole class of immittance Hurwitz polynomials. On
the other hand, the whole class of immittance Hurwitz polynomials devoid of
factors (1+p;) for i = 1 to k can be identified as the class of associates of
the class of immittance Schur polynomials. Furthermore, if a is any immittance
Schur polynomial not containing (1+zi) for any i = 1 to k, as a factor then
there exists an immittance Hurwitz polynomial g without the factor (1+pi) such
that a and g are associates of each other. Conversely, for any immittance
Hurwitz polynomial g devoid of the factor (1+pi) for all i = 1 to k there
exists an immittance Schur polynomial a such that g and a are associates of
each other. Thus, there is a one~to-one correspondence between the members of
the class of immittance Schur polynomials devoid of factors of the type (1+zi)
for i =1 to k and the members of the class of immittance Hurwitz polynomials
devoid of factors of the type (1+pi) for i = 1 to k.

- 1
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The above discussion can be summarized in the form of theorem 2.6.1 for the
purpose of which the following concise notation is adopted. The set of
scattering Hurwitz (Schur), selfparaconjugate Hurwitz (Schur), reactance
Rurwitz (Schur) and immittance Hurwitz (Schur) polynomials are denoted
respectively by SH (SS), PH (PS), RH (RS) and IH (IS). Also, the subclass of a
certain class of polynomials devoid of factors of the type €1+pi) or (1+zi) for
all i, is to be denoted by adding the subscript 1+p or l+z, as the case may be,
to the symbol designating the corresponding class of polynomials. For example,
the class of scattering Hurwitz polynomials devoid of factors of the type 1+pi'
for all i will be denoted by SH, +p’ whereas the class of selfparaconjugate
Schur polynomials deviod of factors of the type is to be denoted by PS;, .-
Furthermore, the notation A(C) will denote the the set of polynomials obtained
by considering the associates of all polynomials belonging to a class C.

Theorem 2.6.1: The following set inclusion relations hold true.

(i) A(Sﬂ1+p) = A(SH) = SS,,, = SS; A(SS) = 581+p < SH. The elements of SH,
and those of ss1 +z 2r€ in 1-1 correspondence.

(ii) A(PH) -Pshchs; A(Psl+z) = A(PS) = PH = PH
and Ps, , are in 1-1 correspondence.

(iii) A(RH) = Rsl+z C RS; A(Rsl+z) = A(RS) = RH = m1+p. The elements of RH
and Rs,,, are in 1-1 correspondence.

(iv) A(Iﬂl+p) = A(IH) = ISl+z'C 18; A(Isl+z) = A(IS) = m1+p < IH.
The elements of ml +p and those of IS, +g e in 1-1 correspondence.

P

1+p° The elements of m1+p

1+p
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2.7. SUMMARY:

Properties of widest sense Schur, selfparaconjugate Schur and scattering Schur
polynomials previously not published in the literature are discussed.
Elementary properties of discrete multidimensional positive functions are then
studied. The reactance Schur and the immittance Schur polynomials occurring
respectively as the numerators and denominators of discrete reactance functions
and discrete positive functions are introduced for the first time. Various
alternate characterizations of these polynomials are then suggested. The
heirarchial ralationship between these different classes of Schur polynomials
can be summarized diagramatically as is done, for example, in the case of the
corresponding classes of Hurwitz polynomials in (2). The role of these
polynomials in scattering or immittance descriptions of discrete (k-D) passive
multiports are investigated. In particular, a discrete (k~D) counterpart of
Belevitch canonical form well known in classical network theory having
potential applications in passive multidimensional digital filter design is
derived. Relationship between the classes of multidimensional Schur polynomilas
and the corresponding classes of multidimensional Rurwitz polynomials are also
discussed within the present context, and are shown diagrammatically in fig
2.1.
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APPENDICES

2.A. The proofs of the results stated below are ommitted for brevity [2].

Definition 2.Al: Let P be a set of k-tuples, z = (zl.zz,...zk), where all z;
belong to a same number field Q (e.g.,either the field of real numbers or the
field of complex numbers). We designate by Qi’ i =1 to k, subsets of @ and we
say that Qe is almost complete if it comprises almost all elements of @ ( i.e.,
all elements except at most finitely many). We then say that P is a
sequentially almost complete set of order m > 1, withm < k, if there exists a
permutation il,iz,...ik of the integers 1,2,...k such that all z € P can be
generated in the following way. There exists an almost complete Qi such that

any z; ¢ Qi may be chosen. For any choice thus made, assuming m > 2, there

there el1sts anlalmost complete 2, (possibly depending on the particular z, €
2, selected) such that any z; eZQ may be chosen. Again for any choice tﬁus
maae, assuming m > 3, there ex;sts aﬁ almost complete e, possibly depending
on the particular zZ; and z; selected) such that any z3 €9 may be chosen
etc. If m = k this ﬂrocess zs continued until we have rgached P; - If m < k,

once we have reached 1 there exists at least one (k-m) tuple (zk reeeZ; )
(possibly depending on the particular z; to z, selected) that maymﬁé choseh

Finally, we may extend the above defln}tlon t® the situation m = 0 by saying

that in this case P is not empty.

The set P is said to be sequentially infinite if in the above definition the
term almost complete is replaced by infinite.

Theorem 2.A2: If a is a polynomial in k-variables such that the set of zeros of
a comprises a sequentially infinite set of order k then a is identically equal
to zero.

Theorem 2.A3: If and b are polynomials in k-variables then a and b have a
proper common factor if and only if the set of common zeros that are common to
a and b is a sequentially infinite set of order (k-1).

Theorem 2.A4: Let a nd b be two relatively prime polynomials. For any m such
that 1<m<k let us freeze m of the variables z;, say for il to im at
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corresponding values Zi0° Let a, and b1 be the resulting poynomials in the
remaining variables. Then there exists a sequentially almost complete set 2 of
m~tuples of order m such thatfor (z, ,z2, ,...2;

i 59 i
b1 are still relatively prime. Furthe}gore, any orégring may be chosen for Qm'

)ch, the polynomial a, and
Theorem 2.AS: If a(z) is a polynomial and a(z;)#0 for some z, then there exists.
€>0 such that a(z)#0 for all z in the neighbourhood ||3-20]|<s, where |}.]]

denotes the Euclidean norm.

2.B. Various properties of the operations ’'~’ and '"’, as defined in the
introductory section of the present paper, are derived in this section.
Property 2.Bl: If a = b.c then a=bc and a = b.c, where b and ¢ are
polynomials.

Property 2.B2: 1If a is any polynomial then a cannot contain the factor z; for
any i.

Property 2.B3: If the polynomial contains the factor z; with exact multiplicity
p; then (deg;a-deg:a) = p,.

Property 2:84: If the polynomial a does not have z, for any i as a factor, and
b = a then b = a,

Property 2.B5: If a is a widest sense Schur polynomial, and b = ; then B = a,

Property 2.B6: If the polynomial d is the greatest common factor between the

polynomial a and its discrete paraconjugate a then d is a discrete
selfparaconjugate polynomial.

Property 2.B7: Let a’=a’(z’) be the polynomial obtained from by freezing in the
polynomial a=a(z) ,one

p.of the variables, say 2y, at 2,=2;4 On |zll-l. Then

z; 1, where pindegia - degia'zo for all ix0.

(a] =z, a1l
2=z 1 im

10 2

Property 2.B8: Let a be a discrete selfparaconjugate polynomial with ;-va
involving the variable z;. If a is expressed as in (2.1.1) then for
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v-O,l,...ni, {2.A1) holds true.

- n
v, = (an _ )nzr t, where the product extends over all ryi (2.Al)
i

v

Property 2.B9: If a is a polynomial and degi(aig) < degia for some i, then
(a+a) must contain the factor z,.

Property 2.B10: If the polynomials a and b are such that b = a+a is widest
sense Schur then b = +b, i.e., b is either paraeven or paraodd respectively.

2.C. The polynomial a, associated with a is obtained from a via a formal
algebraic operation as defined in section 2.1. It turns cut that this operation
plays the corresponding role of considering the derivative of a polynomial in
the context of continuous systems. Related properties of a, are studied in the
following.

Property 2.Cl: I1If £ = gh, where g and h are polynomials in z with their
coefficients as polynomials over the field of complex numbers then
fz - hgz + ghz.

Property 2.C2: 1f f contains a factor g of multiplicity n (n>1) then fz
contains the factor g with exact multiplicity (n-1).

Property 2.C3: 1If the coefficients of the polynomial £ belong to the field of
complex numbers and £#0 for |z|<1l, then Re(fz/f)>0 for |zj«1.
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CHAPTER 3
ON A GENERALIZED FACTORIZATION PROBLEM FOR THE SYNTHESIS
OF QUARTER PLANE TYPE MULTIDIMENSIONAL DIGITAL FILTERS

3.1.INTRODUCTION:

Various synthesis schemes such as the Darlington synthesis scheme for
synthesizing lossless transfer functions as a cascade interconnection of
elementary lossless building blocks such as inductors, capacitors, gyrators
etc. in the continuous domain are well known in classical network theory. The
corresponding problem in the discrete domain, namely that of synthesizing a
discrete lossless bounded (or positive) transfer function as a structurally
passive interconnection of elementary lossless building blocks was first
resolved via transformation from prototype problems in the continuous domain,
and the resulting class of filter structures are now known as the wave digital
filters (1], [17). Recently, however, successful attempts to derive these and
similar other discrete domain results without making explicit use of tools of
classical network theory have been made. Notable among these are the orthogonal
filters [2],(4),(14}),[{15) and the class of filters referred to as the lossless
bounded real (LBR) filters described in ([3], {13] and in related other
publications.

In view of interest in the synthesis of multidimensional (k-D) wave digital
filters, the problem of synthesis of k-D lossless two-port scattering transfer
matrix wvia the bisection of a prescribed two-port into a cascade connection of
two lossless two-port sections of smaller "degree" has been addressed in the
continuous domain in [5]. Factorability of continuous domain two—poff
scattering matrices has also been studied recently [11] in the multidimensional
context. An attempt to develop a complete and self consistent theory for the
synthesis of k-D structurally passive quarter-plane causal type digital filters
independent of the continuous domain methods have already been initiated in
[8), [9) and [10] by discussing the discrete domain stability properties of a
class of multidimensional polynomials. In the present paper the problem of
synthesizing a k-D discrete quarter-plane causal type lossless two-port as a
structurally passive interconnection of more elementary digital building blocks
directly in the discrete domain is approached by the methods of factoring the
chain matrix, the hybrid matrix and the transfer function matrix associated
with a lossless two-port. By following recent results in {9] it can be shown
that each of these matrices can be uniquely expressed by means of a set of
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three polynomials in a form analogous to the Belevitch canonical form [16]) of
classical circuit theory. For the purpose of unified presentation of results, a
matrix referred to as the (multidimensional) generalized lossless two-port
matrix, which can be viewed as a generalization of the multidimensional chain
matrix, the hybrid matrix and the transfer function matrix has been introduced.
Interestingly, in 1-D this matrix can be categorized under the class of sigma
lossless rational matrices considered, for example, in [12]. The problem of
factorizing this generalized lossless two-port matrix into the product of two
matrices of identical type can then be viewed as a problem of structurally
passive synthesis of multidimensional two-ports. It must be noted that
factorization of chain matrix, when feasible, yield networks having cascade
structures as shown in Figure 3.1, whereas the factorization of hybrid matrix
and transfer function matrix, when feasible, yield networks having the
topological structure as shown in Figures 3.2 and 3.3.

Necessary and sufficient conditions for this generalized factorization problem
so introduced to be solvable are obtained in the present paper via constructive
techniques. As expected from our previous study of analogous problems in the
continuous case [5],[11] it turns out that the factorization may aot be
feasible in a generic multidimensional (k>2) situation. However, the
impossibility of factorization of the chain matrix does not by any means rule
out the feasibilty of factorization of the transfer function matrix. Exactly
same comment also applies if the role of three types of matrices (i.e., chain,
hybrid and transfer function) are permuted in any posssible manner (c%. Section
7). Furthermore, in order for the factorizations under consideration to yield
computable digital filters the structures resulting from the factorization may
not have any delay free loop. Apparently, this imposes a further constraint on
the factorization not present in the corresponding continuous domain problems
discussed in [S5] and [11]. However, as shown in Section 3.5, this constrained
problem can always be solved if and only if a solution to the unconstrained
problem exists.

In the special case of 1-D, the criterion for factorability is always seen to
be satisfied, thus guaranteeing the feasibility of factorization. Additionally,
the factorization is seen to be nonunique. Our algorithm for computing these
factors, however, enjoys two remarkable properties. First, it encompasses the
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entire family of possible solutions. From this point of view it may be remarked
that although synthesis in cascade type structures has previously been
considered, for example, in [2],[14],[15) and [3), [13] our method, namely that
of factoring the corresponding chain matrix, is somewhat more general. A second
important property is that the factors can be computed essentially by solving a
highly structured set of linear simultaneous equations, and thus can be
potentially computed in a fast manner. On the other hand, although similar
topological structures have been mentioned in (1] in the context of wave
digital filters obtainable from analog prototypes, we are unaware of any
previous work on discrete domain schemes for internally passive synthesis,
which yield structures as a result of repeatative application of the
decomposition indicated in Figures 3.2 and 3.3. Our discussion, even in the 1-D
context, thus, yields a set of new algorithms for structurally passive
synthesis of 1-D lossless digital filters previously not discussed in the
literature.

Most multidimensional filtering tasks require the filter to have certain
symmetries in their frequency response characteristics [7]). However, this
demands that the two-port be either a symmetric or a (quasi) antimetric
two-pcrt. Motivated by potential applications of the results developed in the
present paper to the design of multidimensional structurally passive digital
filters, special attention to the synthesis of symmetric and (quasi)
antimetric lossless two-ports have also been paid.

In section 3.2 a precise formulation of the problem along with some notation
and terminology are introduced. In section 3.3 it is shown that the
factorization problem so introduced is essentially algebraic in nature. An
elementary step towards the general factorization problem is also taken here.
In section 3.4 some properties of the fundamental equation which, in fact, is a
linear version of the algebraic problem and is central to our study, are
examined. Necessary and sufficient conditions for factorability and an
algorithm for obtaining the factors, when they exist, are obatained in section
3.5. Section 3.6 discusses how the results so obtained yield new as well as
known internally passive 1-D digital filter structures. In section 3.7 remarks
are made on computational considerations of the algorithm for synthesis,
examples are worked out to demonstrate the need for factorability of three
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different kinds of matrices associated with discrete lossless two-ports, and
the special cases of symmetric and (quasi) antimetric discrete two-ports are
dealt with. Finally, conclusions are drawn in section 3.8.
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3.2. NOTATIONS, TERMINOLOGY AND PROBLEM FORMULATION:

English capital 1letters are used to denote polynomials and rational functions
in k-variablﬁs: z2 = (zt, Zgreney zk) The notation zE is used to denote the

monomial (zllz;z....zkk) n belng the k-tuple of nonnegatlve intergers (n

YRRRY nk). Also, R = A (z*_l, 2, 1, - z ) where * denotes complex
conjugation. The notation deg A w1ll be taken to mean the partial degree of the
polynomial A in the variable z;. Occassionally we shall also use the notat.ion A
to denote Az— with ns(nl,nz,.. n, ), where n, =deg A. Similarly for B and C etc.
The notation |z| < 1 denotes l21| <1 for i=1 to k. Similar notations with ¢

replaced by <, >, >, = etc. are also used.

The transfer function matrix [ associated with a k-D lossless two-port can be
represented (9] as in (3.2.1). Note that (3.2.1) is slightly different although
an equivalent version of the corresponding representation in [9]). Consequently,
the chain matrix © and the hybrid matrix I' can also be represented as in
(3.2.2) and (3.2.3) respectively. Also, note that a given I can be uniquely
represented as in (3.2.1) by requiring that A(Q)=l. The representations
(3.2.1), (3.2.2) and (3.2.3) can be regarded as canonic in this sense.

[B YEEE W (A 75551 A —szE.1
i
=(1/m)| b e o r=(1/8B) )
iC -yB2l i B v _2‘ 'C -yAzZ}
{ - = B

— —

(3.2.1, 2.2, 2.3)

where (i) A is a scattering Schur polynomial (9] (3.2.4a)
(ii) v is a unimodular constant, i.e., |y| =1 (3.2.4b)
(iii) AA = BB + CC . (3.2.4c)
(iv) deg, B < n,, deg; C < n, for all i=1 to k (3.2.4d)

Note that as a consequence of (3.2.4c) and (3.2.4d) we also have:

(v) deg A<n for all i=1 to k. (3.2.4e)

For the purpose of a unified presentation of the discussions that will follow,
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matrices ©, T and [ associated with a lossless two-port will be viewed as a
matrix ¢ associated with the lossless two-port as expressed in (3.2.5) while
properties (Pl) through (P4) hold true.

x  oxel
(3.2.5)

Property 1 (Pl): X, Y ang W are polynomials; o = constant, |o{=1, |[p|=+l.
Property 2 (P2): XX - oYY = WW.

Property 3 (P3): degi W<n,, degi X <n; and degi Y <n for all i=1 to k.
Property 4 (P4): X is scattering Schur when p = 1,

whereas W is scattering Schur when p = -1.

A (2 X 2) matrix such as the one in (3.2.5) will be said to be a generalized
lossless two-port matrix if the above properties (Pl) through (P4) hold true.
Since it can be shown that ¢ satisfy diag(l, -p) = $.(diag(l, -p)].% and
diag(l, -p) - #¢.[diag(l, =-p)].¢" > 0 (i.e.,non-negative definite) in [z|<1,

where * denotes the Hermitian transpose, the one-dimensional counterpart of ¢
thus, falls into the class of sigma-lossless transfer functions studied in
[12). sSince factorability of the é-matrices form the major topic discussed in
the present paper, our results can also be viewed as a multidimensional
generalization of the factorability of 1-D sigma-lossless transfer function
elucidated in [12].

We note the following identification of the parameters of the matrix ¢ in terms
of the parameters of the chain matrix ©, the hybrid matrix I or the transfer
function matrix L.

(i) Ifé=0OthenW=C, X=A, Y=B, o=y, p=1
{ii) If ¢ =T thenW=B, X=A, Y=C, 0=-y, p=1
(iii) If ¢ = L thenW=A, X =B, Y=C, o=y, p = ~1

An Advantage of the above formulation is that the problem of factoring the

chain matrix, or the hybrid matrix or the transfer function matrix into a
product of two non-trivial matrices of identical kind can be conveniently
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formulated in a unified fashion as a single problem of factoring the
generalized lossless two-port matrix ¢ as & = ¢’'¢", where ¢’ and ¢" are valid
generalized lossless two-port matrices represented as in (3.2.6a) and (3.2.6b)
with conditions analogous to (Pl) through (P4) satisfied for ¢’ as well as ¢".

-
~ ’ ~ "
X' oryZ? X" o"y"zl

& = (/W) N AN Y ) i (3.2.6a, b)
Y’ po.rxrig |L ” pallxllzgﬂ

Consider first two generalized lossless two-port matrices ¢’, ¢" expressible
respectively in terms of X', Y’, W', ¢ and X", ¥Y", W' , ¢" which satisfy
properties analogous to those satisfied by X, Y, W, ¢ in ¢ as in (Pl) to (P4).
Specifically, one obtains: ‘

(i) X', Y, W and X", Y", W" are polynomials;

¢' and o" are unimodular constants. (3.2.7)
(i1)  X'X’' - pY'Y’ = WHW', X"X" ~ p¥"Y" = W'W" (3.2.8a, b)
(iii) degi W < ni, degi W" < n; for all i=1 to k and (3.2.9a)

degi Y’ £ n{, degi X’ < nf, degi YY" < ng, degi X" < n;

for all i=1 to k (3.2.9b)
(iv) X’ and X" are scattering Schur when p=1,

whereas W' and W" are scattering Schur when p=-1. (3.2.10)

Then the following fact holds true.

Fact 3.2.1: If &' and ¢" are generalized lossless two-port matrices then ¢ =
$'9" is also a generalized lossless two-port matrix.

Proof: Given ¢’ and ¢" define X, Y, W and o and ge(nl,nz,...nk) as follows.

W= Wuw" (3.2.11)

X = X'X" + ory'y"2® ¥ = ¥rX" 4 oo Xryngl (3.2.12a, b)

o= po'c" {(3.2.13)

n; = ni + n; for each i=1 to k {3.2.14)
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It then follows from #=¢'$" in a straightforward manner that ¢ can be expressed
in terms of X, Y, W and ¢ as in (3.2.5). Clearly, (3.2.12), (3.2.7) and
{3.2.9b) show that ¢ satisfy (Pl) and straightforward algebraic manipulations
involving (3.2.12), (3.2.8), (3.2.11) and p = +1 show that ¢ satisfy (P2).
Considering the degree restriction imposed by (3.2.9) and (3.2.14) on (3.2.11)
and (3.2.12) likewise shows that (P3) is satisfied. Note that when p = -1 i.e.,
W’ and W" are scattering Schur polynomials then W = W'W" is clearly scattering
Schur {9], and (P4) is thus obviously satisfied. This completes the proof that
when p=-1, &=$’¢" as expressed in (3.2.5) via (3.2.11) through (3.2.14) is
indeed a generalized 1lossless two-port matrix. On the other hand, when p = 1
i.e., X’ and X" are scattering Schur, X as in (3.2.12a) need not necessarily be
scattering Schur, but can be shown to be immittance Schur {9].

However, to prove that ¢ is a generalized lossless two-port matrix we consider
the rational function F = X/(X'X"). In view of (3.2.12a) we also have:

F = X/(X'K") = 1+ of (Y /%) (Y"/X") 20 (3.2.15)

It follows from (3.2.8) with p=1 that on |z| = 1 we have |§'/X'| 1, whenever
X # 0and |Y"/X"| <1, whenever X" # 0. Thus, Re F > 0 for |z| = 1, whenever
X'# 0 and X" # 0. Next, since X’ and X" are scattering Schur, by invoking Lemma
3b in (9], it follows that Re F > 0 for |z| < 1 i.e., F is a discrete positive
function. Consequently, the numerator polynomial of F, in irreducible rational
form, is a immittance Schur polynomial [9). Note that any possible factor
common to X’X" and X must be scattering Schur, because X' and X" are so. Thus,
X is immittance Schur and can, therefore, be expressed as the product of a
scattering Schur factor X, and a reactance schur factor D (9). Let D, be any
irreducible (thus, reactance schur [9]) factor of D and note that there exists
a sequentially almost complete set Q of order (k-1) of unimodular complex
numbers (9] such that D1 = X = 0 for any 2y € 2. Consequently, in view of (P2)
we conclude that ¥ = W = 0 for all 2y € Q. Since Dl' X, Y, W have a
sequentially almost complete (and thus sequentially infinite [9]) set of common
zeros of order (k-1) and Dl is assumed irreducible, D, must be a factor of X, Y
and W [6). Since D1 is any irreducible factor of D, we then have that X = XID
Y =Y,D, W=WD, where Xy, Yy, W, are polynomials. Slnce D is reactance Schur
D = oD for some unimodular constant % . Clearly, then x:— = (Dc )(x z—) and
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o.n o .M . .
Yz— = (DaD)(YLg—), where g-(ml,mz,...mk) with m.=n, - degiD for all i=1 to k.
Thus, after cancelling the common factor D from the numerator and denominator
of each entry of (3.2.5), ¢ can be written as in (3.2.16), where 9y = o0p.
> I
¢ = (l/Wi) - (3.2.16)
m
: Y po. X, 2—
ol 1M1=
Since x1 is scattering Schur, Property (P4) is satisfied by the representation
(3.2.16) for ¢. It can be further shown via trivial algebraic manipulations
that xl, Yl' Wl, 21 in (3.2.16) satisfy properties corresponding to (Pl) to
(P3) because X, ¥, W, o has been shown to satisfy the same properties.

Note that in the case p=1 if D is a nonconstant polynomial involving, say, L
then the two-port associated with ¢ is degenerate in the sense that in (3.2.16)
m, < ni-ni + n;. The main problem addressed in the present paper, however, is
the converse problem of finding a non-degenerate factorization ¢ = ¢’¢" of a
prescribed generalized lossless two-port matrix ¢ into two factors of its own

kind. More specifically, we have the following problem.

MAIN PROBLEM: Given a generalized lossless two-port matrix ¢ as in (3.2.5), two
constants o', o" such that |o'|] = |o"] = 1 and ¢ = ¢'0", and the polynomial
factorization W = W’W" along with two k-tuples of nonnegative intergers g'-(ni,
N- L " " " -
nj,...np) and n"=(n;, n eeeeny) such that degi W' < nf, degi W' < n{ and n

ni + n; for all i=1 to k, we seek a factorization ¢ = &'#", or equivalently,
find polynomials X', Y’, X" and Y" such that (3.2.12) along with (3.2.8) and
(3.2.9) hold. Furthermore, if p=1 (or p=-1) then we require X' and X" (or W'

and W") to be scattering Schur.
It proves to be convenient to introduce the following two definitions:
Definition 3.2.1: The pair of polynomial two-tuples {X', Y’} and {X", Y"} is

said to be a solution to the algebraic equation if (3.2.12) along with (3.2.8)
and (3.2.9b) are satisfied.
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Note that the restrictions that the polynomials X’ and X" or W’ and W" be
scattering Schur polynomials are not imposed at all in the above definition.

Definition 3.2.2: A polynomial triple (X', Y’, Y"] is said to satisfy the
fundamental equation if (3.2.17) along with (3.2.18) holds true.

¥YX' - XY' = po'Y"W'W'zE'_ (3.2.17)

deg; X' < n{, deg, Y’ < ni{, deg, Y" ¢ n? for all i-1 to k (3.2.18a,b,c)

Note that (3.2.17) is obtained by adding the product of Y’ and (3.2.12a) to the
product of (3.2.12b) and (-X’) and subsequently by using (3.2.8a). Obviously,
then any solution of the algebraic equation also satisfies the fundamental
equation. However, the converse statement is false, consider e.g., X' =0, Y’ =
0, Y" = 0. Note further that the algebraic equations (3.2.12) along with
(3.2.8) and (3.2.9b) constitute a highly constrained nonlinear problem. It is
shown in Section 3.4 that due to the inherent structures underlying the problem
under consideration, solutions to this nonlinear equations can be obtained from
a certain subclass of solutions to the fundamental equation, which, in
contrast, is clearly linear. Thus, solutions to the algebraic equation can be
conveniently characterized in terms of the solutions of the fundamental
equation.
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3.3. SOLUTION TO THE ALGEBRAIC BEQUATION:

Clearly, any solution to the problem of factorization of ¢ = ¢'$" is also a
solution to the algebraic equation. The converse statement is obvious if ¢ is
such that p=~1 i.e., W is scattering Schur. The validity of the converse
statement when p=1 i.e., when X associated with ¢ is scattering Schur is
nontrivial but can be proved as follows in Theorem 3.3.1. Thus, the problem of
factoring ¢ reduces to that of solving a purely algebraic problem namely that
of finding a solution to the algebaic equations.

Theorem 3.3.1: Let the pair of polynomial two tuples (X', Y’} and {X", Y"}
constitute a solution to the algebraic equation. If p =1 (or p = -1) then the
polynomials X’ and X" (correspondingly, W’ and W") are scattering Schur. Thus,
any solution to the algebraic equations is a solution to the problem of

factoring & = #/¢",

Proof: The case when p = -1 trivially follows from scattering Schur property
of W = W'W". When p =1 i.e,, X is scattering Schur, consider the rational
function defined as:

F= (X'X")/X (3.3.1)

Furthermore, by adding the product of (3.2.12a) and (i') to the product of
(3.2.12b) and (-pz') ang subsequently by using (3.2.8a), one obtains

X" = (XX’ - pYY')/(W'W). Substituting the last expression in (3.3.1)
straightforward manipulation yields the following:

P om (XIX MW (1 = (oYY /3K') ] (3.3.2)

It follows respectively tgat~frcm (P2) and (3.2.8a) that on [z|=1 we have |[Y/X|
<1, whenever X # 0 and [Y’'/X’| < 1, whenever X’ # 0. An examination of (3.3.2)
yields that ReF 2 0 for |z| = 1, wherever F is well defined. Thus, from Lemma
3b in [9] it follows that F is a discrete positive function. Consequently, the
numerator polynomial of F, in irreducible form, is an immittance Schur
polynomial. Note that any possible factor common to X’X" and X must be

55




scattering Schur, because X 1is so [9], and thus, X'X" is widest sense Schur
(more specifically, immittance Schur). Next, if for some 2y on the
distinguished boundary |z| = 1, we have X"= 0, then from (3.2.8b) it follows
that Y¥"= 0, which in turn due to (3.2.12a) imply that X = 0. Consequently, if
X"= 0 for all Zy €9 where @ is sequentially infinite set {6) of order (k-1)
of unimodular complex numbers then X = 0 for all Zy € Q. However, this is
impossible if X is scattering Schur ([9]. Therefore, X" cannot have a
sequentially infinite set of zeros of order (k-1) on the distinguished
boundary. The scattering Schur property of X" is thus established in view of
Theorem 9 in [9]). Similar arguments hold for X'.

Proposition 3.3.2: Any generalized lossless two-port matrix ¢ can be decomposed

as ¢ = ’1’0’2’ where ¢

matrices such that $,, ¢, are diagonal and the polynomials XXz— and ww:—

1, 00, ¢, are valid generalized lossless two-port
associated with .a are coprime.

Proof: Let H = gcd(W, X), where W=HW,, X=HX,. Since W or X is scattering Schur
H is also so. It then follows from property (P2) of (3.2.5) that H is a factor
of YQ. Let H=H’H", where H’, H" are factors of Y, Q respectively. Since H"
divides Y, H" divides Y. Due to the scattering Schur property of H" inherited
from H, H" and ﬁ" are coprime and thus Y-(H"ﬁ")Yl for some polynomial Y,. A
direct substitution of the last equation along with We=HW,, X=HX, in XX -pYY=WW
yields (3.3.3a) in the following.

1’ 1

- -~ -~ ~

X, - py1§1 -WW, XX - oYY =WW (3.3.3a,b)

Next, let F = gcd(xl, wi), where X -Fxc, W, = ch and the monomial factors of
of maximal degree in X, and X, are identical (note that this uniquely defines
X_. upto a constant multiplier). Clearly, F, being a factot of X, cannot have a

c
monomial factor and thus, from (3.3.3a), F must divide Y Y Let F=F’ F", where

F' divides Y, and F" divides ¥;. The last requirement 1mpizis F" divides Y,. If
p=-1 then‘F is scatteging Schur since W1 is also so. On the other hand, if p=1
since xl-Fxo, then F is scattering Schur, bgcause §-HX1 is also scattering
Schur. Thus, either Aboth F’ and F" or both F'.and F" are scattering Schur.
Consequently, F’ and F" are coprime, and Y, = (F'F")Yc for somg polynomial Y.
Next, if we define matrices Of = Diag(H"F’, H"F'), Or = Diag(H'F", H'F") and ’c
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as: [#. ]y =X M, (8] =¥ M., [3.];; '(Yc-z-ﬂ)/wc' [’c]ZZ'(xcig)/wc' where
5"("'1'“2""“’)()' mi-ni—degi(m-') it follows in a straightforward manner that
Lol LR P and each of the matrices so defined is a generalized lossless two-port
matrix with same p. In particular, (3.3.3b) holds true, where m, is at least as
large as degixc, degiYc, deg’._wc for each i=1 to k.

Clearly, W, is coprime with ;(c' On the otherhand, since it follows from the
definition of X, that X\ =FX_, W, and X, cannot ‘have a common factor, becau::'.e
otherwi§e, due to Wl-l"w ! Wl and xl would not be coprime. Consequently, X X
and WW, are coprime. If mi-degiw formall i-1~tomk then the last conclusion
also implies that the polynomials wcwc_z_‘ and X X ci- are coprime, the proof of
the present theorem is complete. Otherwise, diagonal lossless two-port matrices
from left and/or right of ’c needs to be further extracted to satisfy the

coprimeness requirement.

For this purpose, note that, due to (3.3. 3b). any monomial factor of X. present
in LA w z—- must also be a factor of Y Ye z . Let S=5,5, be such a factor of
maxmal (total) degree, where the monomal 5 divides Y , and the monomial S2
divides Y, z—. Consider polynomials X or =X c/s' Y. -Yc/sl, =¥ gnd the mEeger
k-tuple 3’-(:&1 ROYERE.A with m} = ml—deg .S. Then clearly X - oY, Y.,

W, w with deg, i X deg Y. , and deg W.,_upper bounded by m’ for all 1-1 to k
holds true. Thus, any_ monouual factor of X, zE present in w w zm must alsc

be a factor of Y Y z . Let 'I‘s'l‘1 2 be such a factor of maxmaI {total)
degree, where the monomal Ty divides Yc" and the monomial 'I'2 divides Yc' _z_E.
Next, consider xo-xc,, Yo Yc,/r and the integer k-tuple Eo'(nol' noZ""nok)'

where n,;= mi—degl'r. By letting W =W, it is then routinely verified that ’c

Diag(sz, Tl).fo.Diag(sl, TZ)' where ’o is a generalized lossless Swoﬁport

matrix described by X, Y, W, n_ and ¢ as in (3.2.5) such that wowo{o is
coprime with X, og_o. The proof of the theorem is then completed by setting:

’1 - D1ag(s ' l) Qf and 02 = Dlag(Sl, 'r ). 0
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3.4. PROPERTIES OF THE FUNDAMENTAL BQUATION.

In this section certain properties of the fundamental equation (3.2.17) crucial
to the development are studied under the assumption that the prescribed
generalized lossless two-port matrix ¢ be such that the polynomials xigg and
w&zﬂ are relatively prime. As shown in Proposition 3.3.2 no loss of generality
is incurred due to this assumption.

Lemma 3.4.1: If the polynomial triple {X’, Y’, Y"] is a solution to the
fundamental equation then there exzst a polynom1a1 X" given by (3.4.1) such
that the polynomial triple {pY'z— ’ X'Ef', -pa’ x"} is also a solution to the
fundamental equation.

X" = B/(x28) = -o/(wwzR) (3.4.1a)
where .
P= (XWW2R + o 'v22y), 0 = Y(ov'2®) - x(x2%)  (3.4.1b, ¢)

Proof: One obtains (3.4.2) bg adding the product of tilde of (3.2.17) and oY to
the product of (P2) and X’ and subsequently by using (3.2.11), (3.2.14) and
trivial manipulations.

(xzR)Q = ~(wrw'zB )P (3.4.2)

Due to the upper bounds on the degrees of X’, ¥’, Y" imposed by (3.2.18) and
degi wW"< n;, it follows from (3.4.1b, c) that P and Q are polynomials. The fact
that X" in (3.4.1a) zs a polynomzal then follows from (3. 4 2) in vzew of
relative ptlmeness of Xz- with W'W'z— . S1nce Q = Y(pY'z~ ) - x(X'z— ) =
pa’ (~pa’ x”)W'W'z— ' the triple {pY'gf ’ X' , =o' x") satisfies the
fundamental equation.

The fact that degi(p§'32’) and degi(i'gg'), for each i=1 to k, is upper bounded
by n! is obvious. In order to prove that degix" < n; we first note that it
follows from (3.4.1b, ¢) and the upper bounds on the degrees of X, Y, X', ¥Y',
X" and Y" that for all i=l to k we have:
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degiP < ni+n;, degiQ < ng+ni (3.4.3a, b)
It is then necessary to distinguish between the following two cases.

(i) If op=1 i.e., X is scattering Schur then degi(XEE) = n, for all i=1 to k.
It then follows from the first equality in (3.4.1a) and (3.4.3a) that degix“ <
ng for all i=1 to k.

(ii) If p=-1 i.e., W, and thus W', is scattering Schur we consider two sets of
indices Il' I, such that i ¢ I if deg W = n' whereas i ¢ I if deg W< n'

If i 1 then due to scattering Schur property of W' we have deg (W'W'z— ) =
2n{. The desired result then follows from (3.4.3b) and second equality in
(3.4.1a). On the other hand, if i ¢ I, then from (3.2.9a), (3.2.11) and
(3.2.14) it follows that Wz— must have a factor 25, and thus, X does not have a
factor z; because Wz- and X are assumed to be copr1me Consequently, deg XZ—
=n;. The result then follows from (3.4.3a) and first equality in (3.4. la)

Lemma 3.4.2: 1If {Xi, i, YI} and {x&, Y5, Y;} are two polynomials triples
satisfying the fundamental equation then the identity (3.4.4) holds and is
equal to a constant.

’ nwyr _ " - ryr _ ’ I~I E_'
N = oo’ (YjX4 - X{Y5)/X = (X{Y¥} - X3¥1)/(W'W'2" ) (3.4.4)

Proof: One obtains an equivalent form of (3.4.4) by adding the product of the
fundamental equation for {X!, Y Y, 1} and X3 to the product of the fundamental
equation for {Xé Yé,YE} and (-X'). Slnce X is assumed coprime with W'W'z— and
(XiYé - XjYi) is a polynom;al, it follows that X must divide (Y7 1%5 = X{ Y
Thus, N = po (YIXé—XiYZ)/X in (3.4.4) is a polynomial. To prove that N 1s a
constant, note that the following inequalities hold true for all i=1 to k.

degi(YzXé - XiYg) < ni, degi(XiYé - XéYi) < 2n£ (3.4.5a, b)
Consider two sets of indices 11' 12 such that i ¢ 11 if degix =N, whereas i €

I2 if deg X< n;. Ifie I, then from (3.4.5a) and first equality (3.4.4) it
follows that N does not involve z;. Ifice I2 then Xz— has the a factor z;.
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Consequent.y, due to the assumed relative primeness of XXz— and WWz— it follows
from (3.2.9a), (3.2.11) and (3.2.14) that neither W’ nor W'z— may have the
factor z,, which in turn respectively imply that degi(W'Ef )=n; and degiW'-n;.
Therefore, due to (3.4.5b) and the second equality (3.4.3a) N may not involve
z;. Thus, N = constant.

Lemma 4.3: If {x’, Y', Y"} is a polynomial triple satisfying the fundamental
equation then the expression given in (3.4.6) is equal to a real constant.

K= (X'X' - pY'Y')/(WW) = (a'Y’E-r—"Y" + X'X") /X (3.4.6)
Proof: Con51der in view_ of Lemma 3.4.1 two solutions X] = X', Y =Y, YI - y"
and Xj = oY’ z— ) Y5 = X'z- ' YS = —pa’ *X" to the fundamental equation. It then
immediately follcws from Lemma 3.4.2 that K in (3. 4 6) is a constant. Since for
|z|=1 we have X'X'-IX'l ' Y'Y' |Y'|2 and W'W'-|W'| , K is a real constant.
Lemma 3.4.4: If the polynomial triple {X’, Y', Y¥Y"} is a solution to the
fundamental equation then there exlsts an X" as ngen by Lemma 3.4.1 such that
{eX’ + BpY'z2 , oY’ + 5x’z— , o¥" - Bpg’ x"} is also a solution to the
fundamental equation, where o and B are arbitrary complex numbers.

Proof: Follows clearly from Lemma 3.4.1 and the fact that the fundamental
equation is linear.
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3.5. FACTORIZATION OF &:

A solution {X’, Y’, Y"] to the fundamental equation will be called nonsingular
if XX’ A pY'Y’,

Theorem 3.5.1: The problem . of factorization of ¢ admits a solution if and only
if there . exists a nonsingular solution {X', Y’, Y¥Y"} to the fundamental

equation.

Proof: Necessity obviously follows from (3.2.8a) and that W=W'W"Z0. If [xl, Y1,
Yf} is a nons1ngular solut1on to the fundamental equation then due to Lemma
3.4.4, X' = axl + 5pY z— Y = aY + Bxlz— , Y = a!{ 6pcl x; is a solution

to the fundamental equatlon Stralghtforward manipulation then yields:
(XX’ - pY'Y')/(WW') = (|<x|2 - olﬁlz)xl (3.5.1)
= (XjX] - » iYi)/(W'W’) (3.5.2)

Since due to Lemma 3.4.3 and nonsingularity of {xl, Y!, Y"}, is a nonzero

constant, if « and B are chosen to satisfy (lal2 - plBl ) - K1 we have
~ ~ 14

(X'X'-pY'Y') - W’W' Furthermore, there exists X" such that (pY'Z— , X'zE ’

-pc' X"), by the virtue of Lemma 3.4.1, satisfies the fundamental equation.

We next show that X', X", Y’ and Y" so obtained constitute a solution to the
algebraic equasion. Equation (3.2.12b) is obtained by adding the product of
(3.2.17) and X'gg' to the product of second equality of (3.4.la) via (3.4.1c)
and (-Y') and subsequently by using (3.2.8a). Likewise, (3.2.12a) is obtained
by adding the product of (3.2.17) and p§'32' to the product of second equality
of (3.4.la) via (3.4.1c) and (-X’) and subsequently by using (3.2.8a).
Finally, we obtain (3.2.8b) by substitituting (3.2.12a) and (3.2.12b) in (P2)
and then using (3.2.11) and (3.2.8a). Thus, the pair of two-tuples (X', Y'} and
{X", Y"]} satisfies the algebraic equation and via Theorem 3.1 is a solution to
the problems of factorization of ¢.

Two polynomials triples {Xi, Yi, YI} and (xz, Y 2} each satisfying the
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fundamental equation will be said to be linearly dependent if there exists
constants « and B not simultaneously zero such that ax' + sxz = aY + BY’ = uy;
+5Y2!0.

Theorem 3.5.2: The problem of factorization & admits a solution if and only if
there exists two linearly independent polynomial triples {Xi' Yi, Yg}, i=1,2
each of which satisfy the fundamental equation.

Proof: Necessity: Let the polynomials X', Y’, X" and Y" constitute a solution
to the factorization problem. Clearly, ({X’', Y’, Y"} 1s a solution to the
fundamental equation. Due to Lemma 3.4.1, therefore, {pY’ z— ' i'gg', -pa’*X"}
is also a solution to the fundamental equation. We claim that these two
solutions are linearly independent, because otherwise there would exist
constants Bl, 52 not sigultgneously zero, such that 61X' + szpy'gg' = SIY' +
szx'zﬂ = 0. Thus, (X'X'-pY'Y’) = 0, which in view of (3.2.8a), would imply
that W’ = 0, i.e., due to (3.2.11) that W = 0, which is impossible.

Sufficiency: If one of the solutions {Xi, Yi, Yg], i=1,2 is nonsingular then
sufficiency follows from Theorem 3.5.1. If both solutions are singular then the
triple (X', Y’, Y"} obtained as: X’ = PX{ + QXj, Y' = pY7 + q¥j, Y" = pYi +
qu, where p and q are complex numbers, satisfy the fundamental equation.
Straightforward algebraic manipulation via the sinqularity of the triples {x;,
Yi, Y;}, i=1,2 then yields:

AXPX7-pY' Y7 )/(WW) = pg"L + DL, L = (X{XS - pY{¥5)/(W'W') (3.5.3a,b)

Since due to Lemma 3.4.1 [p&égg', iég—', -po xz} 1s also a solution, by
invoking Lemma 3.4.2 on the triples {Xi, Y, Y } and {pY z— xzz— . —pO Xﬁ} it
follows that L 'in (3.5.3b) is a constant 1i. e., L=L=L . Thus, the right hand
side of (3.5.3a) is 2Re(pg*L), which, if L#0, can be made equal to 1 by proper
choice of p and q. With p, q so chosen (X', Y’, Y"} would thus be a nonsingular
solution to the fundamental equation, and by invoking Theorem 3.5.1, it then
follows that a solution to the problem of factorization of & exists.

The proof of the present theorem is next completed by showing that Lz0. For
this, consider the following cases.

62




T _l

(i) p=1: Assume for contradiction that L = 0, which due to (3.5.3a) implies
that X'X’ + Y'Y’ = 0 and thus, |X'|2 + |Y'|2 = 0 for |z|=1. Consequently, X' =
0, ¥Y* = 0, and via (3.2.17) Y" = 0, which contradicts linear independence of

_ (x{, Y§, Y], i=1,2.

(ii) p = 1: Assume for contradiction that L = 0, which due to (3.5.3b) implies

XiXé = YiYé. Since (Xi, i, YI} is singqular, we have XiXi = YiYi. The last two
equations together imply Xé/Xi = Yé/Yi = HZ/HI' where Hl and H2 are coprime

polynomials. Clearly, there exists polynomials X' Yo' such that

Xi = HIXé, Yi = HlYé, Xé = HZXé’ Yz = HZYé (3.5.4a,b,c,d)

Considering the fundamental equation for the triple (%], ¥{, YI} and {Xé, Y5,
Y;], we obtain (3.5.5a,b) where Yg is defined via (3.5.5¢).

" L " ' o ") - ’ ﬂ"', run
= H Y YZ HZYO' (YXO XYO) po’'z— W'W YO (3.5.5a,b,c)

Y] = HyYS,

Clearly, Yo” is a polynomial, since otherwise its least denominator would
divide both Hy and Hy, i.e., Hy and H, would not be coprime.

Furthermore, it follows from (3.5.4a), (3.5.4b) and (3.5.5a) that the degrees
of the polynomials in the triple {xa, Yé, YS} cannot exceed the degrees of the
corresponding polynomials in the triple {Xi, Yr, Y"} Thus, 1n vxew of (3 5.5¢)
{Xé, Yé, Y;}, and consequently due to Lemma 3.4.1, {pY z2 ’ X'z— , —pC 'x"} is
a solution to the fundamental equation for some x" Thxs last mens1oned
equatzon along with (3.5.4) and the fundamental equatlons for {pY z— ' Xigﬂ',
-po x{} (cf. Lemma 3.4.1) and [pY 2, xzzﬂ , -po’ x } yield:

X = H X", Xa = azxg (3.5.6a,b)

1 170’

Next, if we define F, = x'xg/x then by ellmlnatlng X3 between Fy and the

fundamental equation for the triple [pY'z— , X'z— , =-po x"} one obtains
(3.5.7).
F, = (x&xa/w'w')[l -(aYYé/XéX)] (3.5.7)
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From Property (P2) of ¢ in (3.2.5) we have |¥/X| < 1 on |z|=1, whenever X # 0.
Since {Xi, Yi, Y;} has been gssumed~ to be a sinqular solution to Ehe
fundamental equation, we have XiXi = YiYi, thus via (3.5.4a, b), XéXé = YéYé,
implying that IXé/Yél = 1 on |z|=1, whenever Yé # 0. Then (3.5.7) yields that
ReFo 2 0 for [z|=1, wherever Fy is well defined. Using an argument analogous to
that used in the proof of Theorem 3.3.1 it then follows (via discrete positive
nature of Fo) that x&, xg are widest sense Schur polynomials, and thus, cannot
contain z;, as a factor for any i=1 to k. Since in {3.5.6) x; and XS are
polynomials, it then follows that Hl and H, are constants. This latter
conclusion violates, due to (3.5.4) and (3.5.5a, b), the linear independence of
{Xi, Yi, Yi'.} and {Xé, Yé, Yg}.

The above result can, in fact, be further sharpened as follows. Ncte that a
corresponding strong result for the continuous case, although true, was not
given in [5].

Theorem 3.5.3: The problem of factorization of ¢ admits a solution if and only
if there exists exactly two linearly independent polynomial triples {X:, Y,
Y;}, i=1,2 each of which satisfy the fundamental equation.

Proof: Due to Theorem 3.5.2, it is only needed to show that one can have at
most two linearly independent scolutions. Assume for contradiction that {Xi, Yi,
Yg}, i=l to 3 be three linearly independent solution to the fundamental
equation and X' = cr.lXi + aZXé + a3X§, Y' = alYi + a.ZYi~+ a3Y'.,' Y"'t alYI*+ azYE
+ ag¥3. Then (X', ¥’, Y"} and, due to lemma 3.4.1, {py'z®, x'2%, -po’ X"} is
also a solution to the fundamental equation. From Lemma 3.4.3, K as defined in
(3.5.8) is a constant.

K = (X'X'=pY'Y' ) /(WW) = (a'¥ 22 y" + x/X") /X (3.5.8)
Consider next the following cases:
{i) p=l: Clearly, we may choose @, i=1 to 3 such that X'(Q) = Y"(0) = 0. Since

X(0)#0 due to the scattering Schur property of X, it follows from (3.5.8) that
K=0 and thus, again from (3.5.8) that X'X’ = pY’'Y'. Next, define F = (X'X")/X.
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From the second equality of (3.4.l1a) and (3.4.1c), one obtains X" = (xi' -
pY§:)/(W'§'). Elimigatigg X" from the last two equations it fgllows that F =
(X'X' MW )[1 - (Y¥'/XX')]. From Property (P2) Of # and X'X' = pY'Y’, one
respectively obtains for |z| = 1 that |Y¥/X| < 1, whenever X#0 and |Y'/X'| =1,

whenever X’#0. Using an argument similar to that used in proving Theorem 3.3.1,
it is then possible to show that F is a discrete positive function, and
finally, X'X" is widest sense Schur, which 1is in contradiction with our
construction that X’ (0)=0.

(ii) p=-1: We claim that there exists zj on [z| = 1, such that W'W’ # 0 [9] and
a, i=1 to 3 can be chosen such that X'(z % =Y’ é ) = 0. It then follows from
(3.5.8) that for z = 25 K = 0, i.e., {X"|°+]Y"|

and via (3.2.17), ¥Y" = 0, which contradicts linear independence of {x;, Y{,

Y;}, i=1 t? 3.

= 0 implying X’ =0, Y’ =0,

To substantiate the claim we show that there exists 2=z4 On jz] = 1 with W'W' #
0 such that XYy - Xo¥) ¢# 0 and thus, it is possible for any nonzero oy to
solve the following linear simultaneus equations for o and a,.

X'(Eo) = a1Xi(§O) + °2xé(50) + u3x§(§o) =0 (3.5.9a)
Y'(go) = alYi(Eo) + azYé(go) + °§Y§(Eo) = 0 {3.5.9b)

For this, consider a solution Xi = X' Yi = Yé, xi = X“ YI = Y" to the
factorization problem. Then from the necessxty part of proof of Theotem 3.5.2
it follows that X} = pY! A, Yy = x 2R, Y5
fundamental equation and that (X', !, Y”], i=1, 2 are linearly independent.
Next, for some 2z3 on 1z] =1 1f X'Yz-sz' = 0 then |X'|2 + |Y6|2 =01i.,e.,
X = 0, Y, = 0, and thus, dug to the equation correspeonding to (3.2.8a)
satisfied by X5 Yé we have W' = W' = 0. Since W' is scattering Schur, there

exists z_on [z|=1 with W'#0 (9] and, consequently, with X;¥) - Xj¥] # 0.

= —pg' x" is also a solution to the

The fundamental equation (3.2.17), when considered as a set of linear
simultaneous equations involving the coefficients of the polynomials X’, Y’, Y"
along with the upper bounds on their degrees, turns out to be overdetermined
in general (except when k=1)., More explicitly, we note that the unknown
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polynomials X’, Y’ and Y" contain a total of u unknown coefficients, whereas
the total number of linear simultaneous equations can easily be found to be
equal to e, u and e being as given in (3.5.10a,b) below.

k k k
u= 1 (ng+1) +21 (ni+1), e= (n; + Zni + 1) (3.5.10a,b)
i-l i-l i-l

Since for k>1 we have e>u in a generic situation a solution to the problem of
factoring ¢ into two matrices of identical kind may not exist.

Delay free loop: In order for the digital network synthesized via the
factorization of ¢ to be 'computable’ it may not contain delay free loops
arising from interconnection of two sections. It is known [1] that this problem
can always be circumvented, at least in the one-dimensional case, by
incorporating digital equivalents of unit elements. The structures resulting
from factorizations © = 676", I' = I'"'I", L = I’L" are shown in Figures 3.1, 3.2
and 3.3 respectively. An examination of directions of signal flows in Figure
3.3 shows that the topological structure arising from the factorization of L
as [ = ['L" cannot contain any delay free loop at the junction of the two-ports
Z' and I". On the otherhand, Figures 3.1 and 3.2 clearly show that the
topological structures arising from the factorization of @ as © = ©'0" and T as
I' = I''T" may contain delay free loops unless special attention is paid to this
issue (note that both of these cases correspond to the choice p=1). However, as
shown in the following, delay free loops at the junction of the two-ports
associated with ¢’ and ¢" may always be avoided by extracting an appropriate
constant (generalized) lossless two-port matrix from #" and subsequently
combining it with ¢’ (the obvious alternative of extracting a constant matrix
from ¢’ and combining it with ¢" also apply).

Fact 3.5.4: Any generalized lossless two-port matrix ¢" with p=1 can be

factored into the product of two matrices ég and Q; of the same type i.e.,
Q"-QEO;, where ég = constant, and Qg is such that the Y-polynomial associated
with it assumes a zero value for z=0.

Proof: Let x = Y"(0)/X"(0), where X" and Y" are corresponding polynomials
associated with ", and 0; be defined as follows.
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o = 1/(1 - 1k12) (3.5.11)
*

K 1

— vy

hl Since p = 1, it respectively follows from Properties (P2) and (P4) that |Y"/X"|
€ 1, wherever X"#0 on |z|=1 and that X" is scattering Schur. The last two
properties, due to an extended multidimensional version of the maximum modulus
theorem proved in [9], imply that either Y"/X" = unimodular constant or JY" /X" |
< 1 for |z < 1. In the former case we would have, due to Property (P2)
satisfied by ¢", that W"s0, which is impossible. In the latter case, we have,

in particular, |k| = |Y"(0)/X"(0)] < 1. Thus, 0% is a generalized lossless
-1

two-port matrix with p=1., Since it is easily verified that (¢2) also

lt" is also a

satisfies this property it follows from Fact 3.2.1 that ¢ = (bg)-
generalized lossless two-port matrix. Finally, the fact that Y-polynomial
associated with ¢!, say Y/, satisfies Y (0} =~ 0 follows from Y =
(Y"—K*x“)/V(l~|K|2) (obtained by considering the (2,1) entry of the matrix

equation # = (#2)774") and Kk = Y"(0)/X"(0).

Next, if ¢ is factorable as & = $’'¢" then due to Fact 5.4 we may also write & =
0&0;, where ¢, = t'ﬁg, due to Fact 3.2.1, is a generalized lossless two-port
matrix. Purther, it is trivially verified that if ¢’ and " satisfies the
requirements imposed in the ’'Main problem’ of Section 3.2 then $. and Qg also
satisfies the same requirements. Thus, ¢ = ¢é.og is a valid solution to the
factorization problem.

If #" is viewed as a chain matrix ", then (assuming that the operation of
shifting the factor 0; from ¢" into ¢’ has been carried out) we have that Y"(0)
= ©5,(0) = 0 i.e., the corresponding transfer function matrix would in view of
(3.2.1) satisfy Z{l(g) = 0. Consequently, there wnuld be no direct path from
'a’ to ‘b’ wvia $" = ©" in Figure 3.2. Similarly, if ¢" is viewed as a hybrid
matrix [ then the corresponding trasnfer function matrix would satisfy 831(2)
= 0, thus gquaranteeing no direct path from 'a’ to 'b’ via ¢" = I'" in Figure
3.3. In either case, no delay free loop exists at the junction of the two
two-ports. Note further that ¢" as in (3.5.10) correspond to the chain matrix
or the hybrid matrix of the well known Gray-Markel section.
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Furthermore, when p=l1, X" is scattering Schur and thus X"(0) # 0. It then
follows from (3.2.12b) that if Y(Q) = 0 and Y"(0) = 0 then Y'(0) = 0. This fact
guarantees that the prescribed generalized lossless two-port matrix ¢ can be
successively factored into product of generalized lossless two—port matrices of
progressively lower complexity in such a way that the Y-polynomial associated
with each of the factors of ¢ except possibly the one at the extreme left when
¢ is interpreted as chain matrix 6 is equal to zero for z=0. Similar
considerations apply when ¢ is a hybrid matrix T. Absence of delay free loops
at each junction of the constituent two-ports, when a given two-port is
fragmented into an interconnection of more elementary two-ports via the method
of factoring ¢, is thus guaranteed.

The algorithm for factoring ¢ can then be summarized as follows:

Step 1: If the prescribed ¢ be such that associated xxi-r—l and wﬁgﬂ are coprime
then proceed to Step 2. Otherwise, factor 0-010002 as described in the proof of
Proposition 3.3.2. Replace ¢ by ’o'

Step 2: Find, if possible, two linearly independent solution {Xi, i, Y;}, i=l,
2 to the fundamental equation (3.2.17). In the 1-D case such a solution always
exist. Factorization of ¢ is impossible if such solutions are nonexistent.

Step 3: If at least one of the two linearly independent solution is nonsingular
i.e., xix; ¥ pYiY{ for any i then proceed to Step 4. Otherwise, proceed to Step
Step 5.

Step 4: Assuming that {Xi, Yi, YI} is a nonsingular solution, find x; from the
second equality (3.4.1a) and (3.4.1c) where Y’ and X' are replaced by Y] and Xi
respectively. Also, find Kl grom (3.5.2) and o, ] fuch that |u|2 - p|p|2 -
1/K,. Finally, form X'= oX{ + Bo¥j2® , ¥' = a¥] + BX{z%, ¥"= a¥] - Bpo’ "X} and
proceed to Step 6.

Step 5: Find the constant L as in (3.5.3b) and p, q such that 2Re(pq*L) =1,
Form X' = pXi + qx&, Y' = pYi + qYé, Y" = pY{ + qYa.

Step 6: Find X" from (3.2.12a). Thus, {X’, Y'} and {X", Y"} i.e., &’ and #" are




obtained.

Step 7: If p=l then from X", Y" associated with ¢", find xk=Y"(0)/X"(0), 0% as
in (3.5.11), ¢ = (ég)—li“ and let 02 = &4z, Thus, ¢ = Qgt; without delay free
loop at the junction.

Remark: Since K, in (3.5.2) is a real constant it is possible to choose real
values of a and B such that the right hand side of (3.5.1) is equal to 1. If ¢
is real (i.e., X, Y, W have real coefficients and o=+1), then X{, Y;, Y] as a
solution to the fundamental equation, and thus, X', ¥', Y" must also have real
coefficients if o and B are chosen to be real. Since this implies that the
coefficients of X" are real, the factors ¢’ and ¢" would then also be real.
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3.6. ONE-DIMENSIONAL SYNTHESIS AS A SPECIAL CASE:

In the one—dimensional case i.e., if k = 1, a closer examination of (3.5.10a,b)
reveals that u - e = 2, and, therefore, there are two more unknown
coefficients than the number of linear equations in the set of linear
simultaneous equations which determine the solution to the fundamental
equation. Thus, there are (at least) two linearly independent solutions of the
fundamental equation, and in view of Theorem 3.5.2, the problem of
factorization of ¢ always admits of a solution. Consequently, structurally
passive synthesis for ¢ is achieved by performing a sequence of further
factorizations of ¢’ and &" into the same kind of matrices of progressively
lower complexity i.e., n; < ng, nI <ny (since ni + ni =n), until a stage is
reached when each of the resulting matrices cannot be factorized any further.
This latter situation corresponds to the case that each of the two-ports
resulting from the decomposition satisfy n, =1, i.e., deg1 C<1anddeg, B
1 and deg1 A < 1. However, if the prescribed ¢ is such that X, Y, W have real
coefficients, o=+1 and W has complex roots then it is necessary to allow
two-port sections with n1-2, deglw-z if realization involving only real
multipliers are sought. In order to avoid delay free loops at the junction of
the two-ports we further require that two-port sections satisfy Y(0)= Q0 when o
= 1 or equivalently, B=0when ¢ = ©and C = 0 when ¢ = T for z, = 0.
Two-port sections of the above types will be called elementary sections and can
in turn be realized in structures possibly other than those considered here by
exploiting synthesis techniques as discussed, for example, in (4]). Thus, the
following elementary sections are obtained.

An érbitrary loss}ess chain matrix © with n, = 1, B(0) = 0 can be synthesized
by wusing the procedure described in [4) in a structure given in Figure 4,
1" 2, B(0) = 0 can, by
following the same procedure, be synthesized in the structure of Figure 3.5.

whereas an abitrary lossless chain matrix @ with n

A lossless hybrid matrix with n, =1 and n, = 2 (assuming Y(0) = C(0) = 0) can
respectively be realized by the same elementary sections as described in the
Figures 3.4 and 3.5, but after a clockwise rotation of the corresponding
diagrams by an angle of 90 degrees.
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On the other hand, an arbitrary lossless transfer function matrix I (in this
case, we may not assume Y(0) to be zero) with n, = 1l or n, = 2 can be realized
by using the elementary sections described above only after a Gray -Markel
section has been extracted from the corresponding chain matrix (or hybrid
matrix) so as to effect a zero value for B(0).

Thus, an arbitrary lossless two~port can indeed be synthesized as an
interconnection of Gary-Markel sections and the sections depicted in Figures
3.4 and 3.5 only. Note that sections of Figure 3.4 and 3.5 were introduced by
Dewilde and Deprettere in the context of cascade synthesis [19], and can be
viewed as scaled versions of interconnections of wave digital filter adapters
(18].
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3.7. DISCUSSIONS AND ILLUSTRATIVE EXAMPLES:

The purpose of this section is many fold. First, we examine the structure of
the fundamental equation in somewhat more detail to facilitate the method of
solution both for the 1-D and the k-D case. Although it has been remarked in
Section 3.5 that the é-matrix is generically not factorable in multidimensions,
the possibility of synthesis for special classes of #-matrices may not be ruled
out. Furthermore, in k-D, nonfactorability of any one of the three matrices, Z,
©, or T associated with a lossless two-port does not rule out the factorability
of other two matrices. This fact is next substantiated via examples, thus
justifying the need to study factorization of all three types of matrices (in a
unified manner). Finally, in practice, all multidimensional frequency filtering
problems require some form of symmetry in the k~D frequency response, and it is
known that such symmetries dictate that the two-port be either symmetric or
(quasi) antimetric in the sense of classical network theory (to be made precise
later in this section). This is indeed the case, for example, in the design of
2-D fan ([20] and k-D circularly symmetric {21] wave digital filters based on
transformations from analog prototypes. Therefore, the factorabilty of the
I-matrix associated with these subclasses of discrete lossless two-ports is
also undertaken in the present section.

A. Computational considerations:

For the purpose of the present discussion, the following notations will be
adopted.

X(z)=L Pi(g')zi, Y(z)=L Qi(g')zi, de'W'gﬂ'-t Ri(g')zi (3.7.1 a,b,c)
X' (2)=L B{(2')2}, Y'(2)=L Qj(z')z},  Y"(z)==L Rl(z')zi  (3.7.2 a,b,c)
where 2’ is the k-tuple cof integers (2,5, z3,...zk) and P,=P,(2'), Q;=Q;(2"),

Ri-Ri(g') and Pi'Pi(E')' Qi-Qi(g'), Ri-Ri(E') are polynomials in z’. Then the
fundamental equation (3.2.17) can be written in the form of (3.7.3):

t.t

V(z’)T(2')=0, TT(2/)=(1] | T5 | T3 (3.7.3 a,b)
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v(z’') = [Qal,...Qé | -Pél,...-Pé [ R;I,...Ral (3.7.3 ¢)

where the superscript 't’ denotes matrix transposition, T, is a
(ni+1)x(n1+ni+1) lower shift matrix whose first row is the (k-1) variable
polynomial matrix: [Pn ,...,Po, 0,...0] and subsequent rows of which are
obtained by shifting Ehe previous rows by one step towards the right. The
(ni+l)x(n1+ni+1) matrix T, and the (n;+1)x(nl+n;+1) matrix Ty are similarly
obtained from the polynomial row vectors: [Qn ""QO' 0,...0] and [RZn""'RO'
0,...0) respectively. For a given T(_z_')1 a solution V(z2’) to t3.7.3a)
corresponds to a solution to the fundamental equation if in (3.7.3c) the
following degree restrictions for all v are satisfied for each i=2 to k.

deg,Q!, < n!, deg.P! < nf, degRY < nJ (3.7.4)

As remarked earlier, if k>1 for a given T(z) a solution V(z) satisfying
(3.7.32) and (3.7.4) may not, in general, exist. However, the following
approach may be adopted in attempting a viable solution. First, find the
Hermite reduced form H(z2’) of T(z’') via the pseudo-division algorithm as
described, for example, in (22], (23] i.e., find a unimodular matrix U(z’) such
that U(z’)T(z’) = H(z') is in Hermite form. Since T(2z’), and thus, H(z') has
(n,+ni+1) columns, but (n;+n,+3) rows, the last k rows (k2) of H(z') are
identically zero. Consequently, each of the last k rows of U(z’} belong to the
left null space of T(z’). However, in order forany vector belonging to this
space to correspond to a solution of the fundamental equation, (3.7.4) must be
satisfied, which, generically, may fail. To elaborate further on this it may be
remarked that (proof ommitted for brevity) in the special case of 2-D i.e.,
when k=2 and if né-ni a necessary and sufficient condition for the existence of
two linearly independent solutions to the funamental equation i.e., that of
factorability of ¢ is that the dimensionality of left null space of T(z')=T(z,)
be exactly two and the two left Kronecker indices {23] of the polynomial matrix
T(z')=T(2,) be each equal to nj=nj. We have so far been unable to establish an
analogous characterizaion of factorability when néfhs.

In the 1-D case (k=1), however, bo.h V=V(z’) and T=T(z’) in equation (3.7.3a)
are constant matrices. FPFurthermore, since it is known that the lower shift
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matrices Tyr Ty and Ty are closely related to Toeplitz as well as
resultant-like matrices, the linear simultaneous equation (3.7.3a) can be
potentially solved by exploiting recently developed fast algorithms for solving
such equations (24). Furthermore, it can be shown by pursuing the proof
technique for Theorem 3.5.3 that in obtaining two linearly independent
solutions to the fundamental equation, one of the zerns of the polynomial
Y"(zl) may be chosen arbitrarily. Once such a choice is made, the solution to
the fundamental equation becomes essentially unique except for a constant scale
factor multiplying each of the polynomials {X’, ¥Y’, Y"} in the solution. It can
be shown that each of these three polynomials in this solution can in turn be
expressed via closed form determinantal formulas as discussed in (25]. From a
computational standpoint this latter method, as opposed to the Toeplitz-like
method mentioned above may not, however, be the most inexpensive when the
integers ni, ny, and thus, n are large.

B. Examples on factorability of [, © and T:

We next illustrate by three examples that in multidimensions by viewing the
¢-matrix as three different types of matrices associated with a two-port,
namely the transfer function matrix I, the chain matrix © and the hybrid matrix
I', the synthesis of a larger class of discrete lossless two-ports can be
attempted than by considering the factorization of a matrices of only one of
the above kinds.

(I) Consider a discrete lossless two-port described by A = PQ, B, and C = 2RS,
n = (3,3) and o=-1 as in (3.2.1), where

P-zlz§-222z1+zl+4, Q-z§22-22122+22+4,

B-4ziz;—4z zg—Sz zg—éziz§+7zlz§-222z2+4zizz—6z122—422—25—2z§—521+4,
2

2 2

R-zlzz-l, S-zlz -2 +zlzz+4zlzz—zz—zl-zl-2

In attempting a nondegenerate factorization of the corresponding &-matrix (e=1)
into nonconstant ©' and ©" we encounter the following distinct possibilities:

(i) E’-(zlz)l B".(lrl)' Y'= C'= §, Y"= C"= 2R (ii) El-(lll)l E”'(sz)a Y'= C' =
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'R, Y"= (C" = 25. Neither in case (i) nor in case (ii) we have two independent

solutions to the fundamental equation (3.2.17). Via Theorem 3.5.3, we thus
conclude that © cannot be factored as ©/6"., However, the corresponding I can
factored as [ = I'I" where I' and I" are described as (clearly, p=p’=p"=-1 in
this case): '

. 2 e ot 2 -
W=2aA" =P, X'=B'= 22122—221z2-222+2, Y'= C 22+2z2+1, o'=a=1

W'= A" = Q, X"= B"= Zzizz~22122—221+2, Y"= C"= zi+2zl+1, a"=-1

Since the above © can also be viewed as a hybrid matrix I (with slight
modifiation in the sign of o), the example also demonstrates that there exists
discrete lossless two-ports for which the associated transfer function matrix
can be factored but the associated hybrid matrix may not be factorable.

(II) Consider the discrete lossless two-port given by A, B = 2PQ, C = RS,
n=(2,2), o=1, where
A-3-22-z2-zzzz, P=1-2.2,, O=1+2,2,, R=Z,2,+2,+2,+1, S=2,2.-2,-2,+1

1 °2 7172 172 1°2’ 1°27°2°71 172 °2°°1
An attempt to factor I into nondegenerate nonconstant factors I'" and I'™ gives
rise to the following two distinct possibilities with n’=n"=(1,1) in both
cases: (i) Y'= B'= 2P, Y"a B"= Q (ii) Y’'= B’= Q, Y"= B"= 2P. In neither of the
above two cases the fundamental equation is found to have two linearly
independent solutions, thus ©proving, 1in view of Theorem 3.5.3, the
impossibility of the intended factorizaion. However, the corresponding ©-matrix
can be factored as ©=9'0", where ©' and ©" are described withy p=p'=p"=1 as:

K'= A'-(zlzz+2zl+2z2+3)/v3, Y'= B'-(zl+zz+2)//3, W= C'= R, o'=}

X"= A"-(zlzz—221-2z2+3)/V?, Y= B"=(—2z122+zz+zl)//3, W'= C"= §, o"=l

Note that Y"(0)= B"(0) = 0; thus, there is no delay free loop at the junction
of the discrete two-ports. By interchanging the roles of B-polynomial and the

C-polynomial in the above example we can similarly demonstrate the existence of
a discrete lossless two-port for which the I'-matrix can be factored as I'=I''T",
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but the associated © is not factorable as 6=9'0".

(III) Consider next a discrete lossless two-port described by A, B, C=RS,
§§(2,2), o=1, where
As—(7+321-Zzz—22122-z§+3212§), B=z§z§-3zlz§+z§+zl—22§zz-22122-4,
R-zl+l, S=Zzlz§—22122—222+2

A detailed examination of the degrees of the polynomials A, B and C reveals
that the only possible way of factoring the transfer function matrix I
associated with the two-port is to attempt either (i) n’=(1,0), n"=(1,2), A’'=l,
A"=A or (ii) n’=(1,2), n"=(1,0), A'=A, A"= 1. In both cases, however, the
fundamental equation (3.2.17) fails to yield two linearly independent
solutions. Thus, I-matrix associated with the discrete two-port under
consideration cannot be factored. On the otherhand, the associated chain matrix
© can be factored as ©=©'@", where @' and ©" are described as:

o"=1, o'=1, W= C'= R, W'=C"=5, X'= A'--(zl+7)//15, Y= B'-(2z1-4)//15,
X'= A"=(dz,22-82, 2. +42,~22-22 +15) W15, Y"= B"=(-z,2%+42%422,2,+82.~2, ) /15
1237821 2,+42,-25-22, 3 1224425422, 2,482,-2)

Note again that Y"(0)=B"(0) ensures that there is no delay free loop at the
junction. By viewing the chain matrix as a hybrid matrix the same example with
minor modofications can be used to show the existence of a discrete lossless
two~-port for which the transfer function matrix I cannot be factored, although
it is possible to factor the associated hybrid matrix T.

C. Symmetric and (quasi) antimetric two-ports:

A discrete lossless two-port will be called symmetric or (quasi) antimetric if
(3.7.5) (or (3.7.5')) holds true. Note that the former case corresponds to fan

type symmetry ([20], whereas the latter case correponds to circular symmetry
(21]) in frequency response.

CeoCzl,  Bm=-oB2?, (Cm-0Cz®, Bm-oB2D) (3.7.5) ((3.7.5"))
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Let the rational functions L1 and L2 be defined as in (3.7.6) (or (3.7.6’)) for
symmetric (or (quasi) antimetric) filters.

L,=(B+C)/A (or (B+jC)/A ) (3.7.6a) ((3.7.6'a))
L2=(B—C)/Al (or (B-jC)/A ) (3.7.6b) ((3.7.6’'b))

Then it clearly follows from (3.2.4c) that Llil-L2£2=1, and consequently,
)L1]=|L2|=1 for jz|=1, wherever L, or L, are well defined. Since both L, and L,
1 and L, are both
multidimensional discrete all-pass functions. By making use of (3.7.6) (or
(3.7.6')), I as in (3.2.1) can be expressed as in (3.7.7a) and (3.7.7b) in the
symmetric case and as in (3.7.7'a) and (3.7.7'b) in the (quasi) antimetric

case.

have scattering Schur denominators [9), it follows that L

2118222-(L1+L2)/2, 212-521=(L1-L2)/2 (3.7.7 a,b)
211-222=(L1+L2)/2, Z21=-212=j(L2-L1)/2 {3.7.7' a,b)

Conversly, for any two discrete all-pass functions L1 and L, the matrix I
obtained by using (3.7.7) (or(3.7.7')) is a valid transfer function matrix of a
discrete lossless two-port. Thus, any multidimensional discrete 1lossless
two-port can be equivalently described by means of two multidimensional
all-pass functions Lys Ly. We then have the following important result.

Theorem 3.7.1: Let {Ll, Lz}, [Li, Lé], {Li, Ls} be the all-pass functions
associated with symmetric (or (quasi) antimetric) discrete lossless two-port
transfer function matrices I, I’ and L" respectively. Then [ = I'I" if and only
if L, = LiL; and L, = LéLg hold true.

Proof: Expressing I = I'L" in terms of the corresponding Ly and L, via (3.7.7)
(or (3.7.7')) and its counterparts for I’ and ", it follows that the
factorability condition L = L'E" is equivalent to L, = LiL{, L, = LéLg.

Since it can be easily shown by pursuing methods outlined in {9] that any
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rational all-pass function L can, in fact, be expressed as L-(;/P)EE in
irreducible form, where P 1is a scattering Schur polynomial, Theorem 3.7.1
conveys the important fact that the factorability of multidimensional symmteric
or (quasi) antimetric discrete lossless two~port transfer function matrices can
be simply expressed in terms of factorability of two scattering Schur

polynomials.
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3.8. SUMMARY:

The present work has been motivated by the possibility of designing
structurally passive multidimensional digital filters. A simple algorithm
involving the examination of solution ot a set of linear simultaneous equations
for studying the synthesizability of an arbitrary multidimensional discrete
lossless two—port has been derived via factorization of the associated chain
matrix ©, hybrid matrix I and transfer function I by introducing a generalized
lossless two-port matrix ¢, which in turn can be considered as a

multidimensional version of the sigma-lossless transfer functions discussed in
the 1-D literature. It turns out that under a generic situation, synthesis not
be feasible. In the special case of one-dimension our algorithm provides new
methods of realizing structurally passive filters directly in the digital
domain. Although in the multidimensional (k>1) case synthesis may not be
feasible for an arbitrary discrete lossless ©, I', and I, the possibility of
synthesis for special classes of discrete lossless two-ports is by no means
ruled out. Examples of such subclasses of two-ports such as the symmetric or
the (quasi) antimetric discrete lossless two-ports have been discussed.
Existence of other classes of discrete lossless two-ports admitting synthesis,
albeit in special topological structures, seems feasible, but remains to be
identified. This is especially true in view of cascade synthesizability of
certain classes of two-dimensional continuous time systems arising in studies
of lumped-distributed netwoks [22). It may be noted that the cascade
synthesizability of lumped-distributed networks can be characterized in terms
of properties of certain polynomial matrices having the structure of
bigradients (otherwise called resultants). The occurrence of polynomial
matrices of similar type has been noted in our study in the context of
computing a solution to the fundamental equation (cf. equation (3.7.3)).
However, further investigation is needed to explore this connection in
successfully utilizing the results of lumped-distributed network theory in
multidimensional digital filter design.
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CHAPTER 4
SYNTHESIS AND DESIGN OF STRUCTURALLY PASSIVE
FULLY RECURSIVE 2-D DIGITAL FILTERS

4.1. INTRODUCTION

Various recursive schemes have been proposed in the multidimensional (m-D)
digital filter literature. Among these the most widely studied are the quarter
plane, the asymmetric and the symmetric half-plane recursive scheme. More
recently, motivated by needs for parallel processing of 2-D signals a scheme
known as the fully recursive half-plane scheme has been proposed in [15]), and a
method of designing transfer functions of filters having this recursive
structure has been outlined in (5]. The impulse responses of the class of
filters just mentioned satisfies the characteristic property that the region of
support is a half-plane and the filter is recursive in both horizontal and
vertical direction. More specifically, the recursion equation describing the
relation between the input x and output y of a filter of this type is given by:

b
L:[{yn(m)ll = - i?f Lil{yn_l(m>}1 + i?g L?[{x(n_l)(m)}] (4.1.1)

where xn(m), yn(m) denote the n-th row of the input and the output signal;
thus, for example, x (m) = x(m,n) form= 0, + 1, + 2,...etc; and the (row)
operations La[ ] and L [.] respectively dencte 1-D linear shift invariant
convolution operatlons wzth the 1-D sequences a; (m) and b, (m). Con51der1ng the
2-D Z-transform of (4.1.1), and assuming that the operat1ons L [.) and L {.]
are all rational we then have (4.1.2) for the transfer function of the fllter,
where the rational functions Ai(zl), Bi(zl) representing the row operations
just mentioned are expressed in irreducible rational form (i.e., as the ratio
of two relatively prime polynomials) as in (4.1.3).

Y(zl,zz)/X(zl,zz) - EN A (z )zz/lgz B.(2z )z2 (4.1.2)

A(z)) = Nj(z))/}(2)), i = 0,1,...L (4.1.3a)

B;(z) = N(z,)/D5(z)), & = 0,1,...L (4.1.3b)
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On the otherhand it is now well known that an input-output description such
as the one expressed in (4.1.2), (4.1.3) is not enough for the successful
operation of a digital filter but structural considerations need to be taken
into account. The class of structurally passive filters variously known as the
wave digital filters [16], orthogonal filters {17] or the lossless bounded real
filters (18], when properly designed, are known to satisfy the properties of
insensitivity to coefficient perturbation and non-linear arithmatic conditions
resulting from overflow, finite precision arithmatic etc. Although much
progress has been documented in the synthesis and design of 1-D structurally
passive filters, methods for two and higher dimensions are still evolving.
Synthesis methods for two and multi-dimensional wave digital filters, which are
quarter plane type filters have been reported in [16], [7]. Quarter plane and
asymmetric half-plane generalizations of 1-D lattice filters which are, in
fact, structurally passive, have been discussed recently in the context of
random field modeling in (11],[19].

Following 1-D, in the present paper (pseudo) passive or (pseudo) lossless
fully recursive half-plane 2-D digital filters are introduced and a method of
their structurally passive synthesis and subsequently that of their design is
discussed for the first time. The problem of synthesis of quarter plane causal
(thus, including filters causal in a convex cone (20]) structurally passive
multidimensional filters of the type mentioned above can be equivalently viewed
as the classical network theoretic problem of synthesizing a lossless but
otherwise arbitrarily prescribed multidimensional transfer function as an
interconnection of elementary building blocks such as capacitors and inductors.

This latter problem is completely unresolved in multidimensions (m>2), whereas
in 2-D synthesis is feasible only in an unconstrained topological structure
[20]. On the otherhand, it has been shown that if certain ladder-like
constraints are imposed on the structure in which the filter is to be
synthesized then the prescribed 2-D transfer function must satisfy further
restrictions in addition to input-output losslessness [21), ([22], [23).
Related otner synthesis results [7), [16] in this context deal with important
special cases when the multidimensional frequency response of the filter
possesses certain symmetries. In contrast, the present work provides us with a
synthesis of arbitrary lossless fully recursive half-plane 2-D filters.
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Additionally, unlike the quarter plane case referred to earlier the synthesis
is obtained in a fixed predetermined structure potentially useful for practical
implementation.

As in most passive or lossless filter design techniques our synthesis
method proceeds by viewing the prescribed passive transfer function as being
embedded into the transfer function of a lossless two-port. The synthesis of
this fully recursive half-plane lossless two-port takes advantage of a recent
algorithm for the design of structurally passive 1-D filters advanced by Rao
and Kailath (6] as an extension of the celebrated Schur algorithm [9). Unlike
all other methods known for the synthesis of 1-D continuous as well as discrete
lossless two~-ports including those available in the classical circuit theoretic
literature, the algorithm of [6] enjoys the unique feature that given a
transfer function associated with the lossless two-port the synthesis algorithm
makes use of rational arithmatic operations only (i.e., nonrational arithmatic
cperations such as polynomial factorization is not required) [10]. The
syathesis method for fully recursive half- plane filters to be presently
described €fully exploits this rational character of the 1-D algorithm in {6].
Although the details of the method differ nontrivially form 1-D due to
considerations characteristic of multidimensional problems (e.g., those
utilizing techniques from elementary algebraic curve theory (3], (12}), the
synthesis to be outlined can be considered, at least at a conceptual level, to
be a generalization of the result in [6] to two-port transfer functions the
coefficients of numerator and denominator polynomials of which belong to a
field of rational functions (instead of the field of rational numbers). From a
different perspective the present work can also be viewed as a generalization
of 1-D Schur algorithm to 2-D fully recursive half-plane filters, thus making
it possible to cast the present discussion in the closely related framework of
modeling of stationary random fields and scattering theory (9]. '

A note regarding the stability of the filter is in order. The region of
analyticity of the transfer function of our filter will be found to marginally
differ from those previously considered in the 2-D half-plane literature (4},
[S]. This is primarily due to the fact that the results such as those in (4],
{S] are motivated by bounded-input-bounded- output considerations, whereas, in
contrast, our results are driven by passivity considerations. The fact that
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this difference in consideration does indeed lead to diverging formulations of
stability in multidimensions (m>l), but not in 1-D, is now known [1], (2].
Thus, there is no contradiction between our stability results and those
existing in the half-plane literature so far.

In Section 4.2 the fully recursive half-plane passive one-ports are
characterized in terms of their transfer function. Similar considerations in
the context of two-port transfer functions form the context of Section 4.3. A
representation theorem for fully recursive half-plane lossless two-ports
analogous to that of the Belevitch canonical form [8] of representation for
lossless 1-D continuous two-ports of classical network theory is developed
here. In Section 4.4 the synthesis method based on this representation theorem
is described, and in Section 4.5 a design methodology is proposed by taking
into account the symmetry requirements [14] on the frequency response imposed
by many practical multidimensional processing tasks.
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4.2. FULLY RECURSIVE SYMMETRIC HALF-PLANE PASSIVE SYSTEMS:

By associating the (pseudo) energy tzlx(nl,nz)l2 to the input x(nl, nz) of the
system we first develop conditions necessary for the transfer function of a
fully recursive half-plane filter to be passive in the sense that:

LT Jy(n,, n,)1% < EL |x(n, ny)|2 (4.2.1)
for any choice of square summable input sequence x(nl, nz).

By choosing x(nl, nz) = S(nl, nz) i.e., the 2-D impulse function, the impulse
response h(nl, "2) of the filter can be obtained as the corresponding output.
We then have:

«
I

y(n,, n,) = h(n,, n,) =
1 72 1’ 2 k=0

hk(nl) 8(n2-k) (4.2.2)

where hk(nl)' k=0,1,...etc. are certain 1-D sequences and &§(.) is the 1-D
impulse sequence.

Considering the z-transform of (4.2.2) we obtain:
> Mok
H(zl, zz) = L [I hk(nl)z1 ] z, (4.2.3)
k=0 ny
Using the Schwartz inequality it follows from (4.2.3) that
2y, 2,12 <k(z,) . L (2 h(n)z )2
1’ "2 = 2" " k1%
k=0 ny

where k(zz) =1 + |22|2+ lzzl4 S ch.

(4.2.4)

I1f we consider the special case z, = exp(jwi) then we have (4.2.5) from
(4.2.4).

j @
|H(e “ z2>|2 < k(zy) . kfo 1uk(w1)|2 (4.2.5)

where Hk(“i) is the Fourier transform of hk(nl) for each k = 0,1,2,...etc.
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On the otherhand, substituting z, = exp(jwi), i=1,2in (4.2.3) we obtain that
the Fourier transform H(wi,wy) of h(nl,nz) is given by:

® kaz
Hlw, a&) - E H (aﬁ) e (4.2.6)
which in turn yields that:
2 ° 2 . . Jun
IH(wi, w2)| = I ’Hk(wi), + terms involving e with nz0
k=0
(4.2.7)

Assuming termwise integrability of the right hand side of (4.2.7) we then have:

+n+N
I lH(wl m2)| dmld(«x2 = 2n I {kto H (wl)l } dml (4.2.8)
-n-n -n

However, by the 2-D Parseval’s formula the left hand side of (4.2.8) is equal
to (4n2)2|h(n1, n2)|2 i.e., the total (pseudo) energy in the signal h(nl, Nyl
whereas the right hand side can be similarly interpreted as the sum of the
(pseudo} energies contained in the rtow outputs ho(nl), hl(nl),...etc.
Furthermore, if we assume the fully recursive filter under consideration to be
passive then from (4.2.1), first part of (4.2.2), and the fact that x(n ) =
é(nl,nz), it follows that LI |h(n1,n )| ®, Thus, the integral in the left
hand side of (4.2.8) is finite, and consequently, except possibly isolated
values of w in the interval [-n,n], the inteqgrand in the right hand side is
bounded i.e., we have:

- 2

I [H ()" <= (4.2.9)
Koo | KL

In view of (4.2.5) arid the fact that k(z ) < 1 for (zzl < 1 we then conclude
that for all lel = 1 except possibly 1solated values on the unit S ircle and
for all |z2| < 1, H(zl,zz) is bounded; and furthermore, if H(e 0

2
unbounded for some ag| < 1 and real oL then kfo ‘Hk(wio)‘ must be

' zzo) is

unbounded, and thus H(e ,zz) must also be so for all z,.

We digress temporarily to examine a consequence of passivity reflected on the
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transfer function H(zl, zz) of the filter. By using the 2-D Parseval’s
theorem, (4.2.1) and the fact that Yoy ay) = Hlwy o)) X(w ), where Y(wi,wQ),
X(wi'w2) are the respective Fourier transforms of y(nl,nz), x(nl,nz) we have
that

nn
I T Ixtay o) 12 (-8 a) %) duy day 2 0 (4.2.10)
-n-n

Since (4.2.10) is true for any input X(wi'wQ)’ we have that |H(w1,w2)|gl for
all real two-tuples (“ﬁ’“ﬁ) except possibly for finitely many of them.

: Juyg :
Consequently, if H(e 'ZZO)jw;s unbounded for some lzzol < 1 and real @ g0
then as shown previously H(e 0,22) would be unbounded for all 25, and thus
for all z, on |22| = 1 in particular. This latter situation would then violate
the conclusion of the last paragraph. Thus, H(zl,zz) is bounded for all 1zl| =

1 and IzZI < 1.

We next make the siﬂplifying assumption that for each k = 0,1,...etc.

H (2,) =L h/(n,)z 1 i.e., the z-transform of h, (n,) are rational functions in
k' 1 n. k1771 k'l
2. Sinc% the recursion equation for the fully recursive symmetric half-plane

filter is given by (4.1.1) it is clear that the transfer function H(zl,zz) is a
rational function of z,. Under the present assumption however, H(zy,2,), in
view of (4.2.3), becomes as in (4.1.2) and (4.1.3) a rational function of both
zy and Zq, and can be expressed as the ratio of two relatively prime
polynomials b(zl,zz) and a(zl,zz) as:

b(z
H(zl,zz) =
a(zl,zz) (4.2.11)

llzz)

We now claim that for passive systems presently under consideration, the
polynomial a(zl,zz) in (4.2.11) cannot have infinitely many zeros on the
distinguished boundary lzll = Izzl = 1 of the unit bi-disc. For, if a(zlo,zzo)
= 0 for some |210! - |zzol = 1 then in view of (4.2.11), in order for
|R(w1,w2)l <1 to be satisfied we would need b(zlo,zzo) =0 i.e., a(zl,zz) and
b(zl,zz) would have a common zero on |zll-|22|-1. However, the presence of
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infinitely many such zeros would, in view of Bezout'’s theorem in algebraic
curve theory [3], require that b(zl,zz) and a(zl,zz) have a common factor,
which has been hypothesized to be absent in (4.2.11).

A further consequence of passivity is that when the transfer function H(zl,zz),
is expressed in terms of ratio of two relatively prime polynomials b(zl,zz) and
a(zl,zz) as in £4.2.11), it must be true that a(zl,zz) is relatively prime with
the polynomial a(zl,zz) defined as:

~ dl dz * *"l *_1
a(zl,zz) = S(zl,zz)z1 2,7 S(zl,zz) = 3 (zl 129 ) (4.2.12 a,b)

where dl' d2 are the partial degrees of a in 2y and Zy: and * denotes complex
gonjugation. To prove this let g(zl,zz) bg the gcd between a(zl,zz) and
a(zl,zz). Then as shown in [2] we must have g(zl,zz) = yg(zl,zz) where y =
constant, |y|=1l; and g(zl,zz) is either a constant or must have infinitely many
zeros on |21| = )zzl = 1. In the latter case, a(zl,zz) must have infinitely
many zerosS on |zll - |22| = 1, which has been shown to be impossible in the
last _paragraph. Thus, g(zl,zz) = constant, and a(zl,zz) is relatively prime
with a(z,,z,).

The essential features of the above discussion are summerized in the following
result.

Property 4.2.1: The transfer function of a passive fully recursive symmetric

half-plane filter, when expressed in irreducible rational form as in (4.2.11),
satisfies the following two conditions: (i) a(zl,zz) # 0 for lzll = 1 and

'22', < li.e., H(zl,zz) is analytic in |z1| = 1 and |zZI < 1. (ii) a(zl,zz)
and a(zl,zz) as defined in (4.2.12), do not have a common factor.

The condition (ii) in the above property can, in fact, be replaced by any one
of the conditions expressed in the following.

Assertion 4.2.1: Let a(zl,zz) be a polynomial in Zy and z, such that a(zl,zz)
2 0 for lzll = 1 and lzzl < 1. Then the following conditions are all
equivalent.
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(a) a(zl,zz) does not have infinitely many zeros on the distinguished boundary
1291 = 1251 = 1.

(b) a(z ) and ;(zl,zz) are relatively prime polynomials.

1'%2
(c) Each irreducible factor of a(zl,zz) has at least one zero in the domain
|zll =1, |zzl > 1.

Proof: It has already been proved that (a) implies (b). To show that (b)
implies (a) obgerve that if for some |zlol = Izzol =1, a(zlo,zzo) = 0 then
from (4.2.12) a(zlo,zzo) = 0. Consequently, if a(zl,zz) has infinitely many
Zeros on Izll = 1 then a(zl,zz) and a(zl,zz) would have infinitely many common
zeros (on |21| = |zzl = 1). Therefore, due to Bezout’s theorem [], a(z‘,zz)
and a(zl,zz) would not then be relatively prime polynomials. Thus, (a) and (u)
are equivalent.

Next, if al(zl,zz) is any irreducible factor of a(zl,zz) then obviously
al(zl,zz) # 0 or |zl| = 1, |22| < 1. Furthermore, if al(zl,zz) does not
contain any zero in |zl| =1, Izzl > 1 then for any z, on |zl[ =1, al(zl,zz) #
0 in |22| < 1 as well as in |zzl > 1, and thus the values of zy such that
al(zl,zz) = 0 must be on |zz| = 1. Consequently, al(zl,zz), and thus a(zl,zz)
would have infinitely many zeros on |zll - Izzl = 1, Therefore, (a) (or
equivalently (b)) implies (c).

To prove that (c) implies (b) let g = gcd(a,;) i.e., a=g.e, ; = gf, where e
and f are relatively prime polynomials. Then, as shown in (2] ; = yg where vy
is a constant. Assuming g to be a nonconstant polynomial, if each irreducible
factor of a contains at least one zero in |z1| =1, lzzl > 1 then g and thus ;
= +yg must have a zero in |z1| =1, Izzl > 1. However, this implies that the
polynomial g and thus, in view of a = ge, the polynomial a must have a zero in
|zll = 1, |22| < 1, which is a contradiction. Thus, g = constant and a and ;
are relatively prime.

We also have the following important result.

Property 4.2.2a: If a rational functicn H-H(zl,zz) as in (4.2.11) is such that
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|B|<1 on lzll-lzzl-l except possibly at finite number of points where H is not
well defined and if H satisfies the conditions expressed in property 4.2.1(i)
(thus, if H(zl,zz) is tranfer function of a passive fully recursive half plane
filter) then |H|<1 for all lzll-l and |z2|<l. Furthermore, for some (zlo,zzo)
with |210|-1,|z20|<1. Then H(zlo,zz) is a constant independent of z,.
Assuming H to be nonconstant, the latter situation can arise for at most
finitely many values of 250 (with |z10|-1).

Proof: Due to property 4.2.1 (i) the denominator polynomial of H(zl,zz) cannot
be zero for some fixed lzlol-l and arbitrary values of z,. Thus, if for any
20 with |zlolsl we define Hl-Hl(zz)-H(zlo,zz) then due to our hypothesis Hy is
well defined, analytic in lzzl<1 and lﬂllgl for all |zzl-1 {except at the
possible poles). Thus, by maximum modulus theorem lsllsl for all |z2}<l.
Since this is true for arbitrary 250 ON |21|'1 the first part follows.

To show the second part assume for contradiction that for some lzlolsl,
|zzol<1, we have H(zlo,zzo)-l. Then as shown above the maximum modulus theorem
applies to al-Hl(zz)-Hl(zlo,zz) and thus IHl(zzo)l-l with lzzol-l implies that
Hy=H,(z,)=C=constant i.e., in view of (4.2.1) b(zlo,zz) = C a(zlo,zz).
However, if H is nonconstant then b(zl,zz) and a(zl,zz) are relatively prime
nonconstant polynomials. Consequently, b(zlo,zz) and a(zlo,zz) treated as
one-variable polynomials may fail to be relatively prime for at most finitely
many values of 20 [1). The second part is thus established.

In fact, the following result in Property 4.2.2b can also be proved. This
result shows that the polynomials of the type described in properties 4.2.1 (i)
and 4.2.1 (ii) characterize denomination of irreducible rational. functions
satisfying the (half-plane) boundedness property: |[H|<1 for lzll-l, |22|<1-

Property 4.2.2b: If # is a nonconstant irreducible rational function as
expressed in (4.2.11) and is such that |H|<1l for |zli-1,|22|<| then either a is
a constant or satisfies properties 4.2.1 (i) and 4.2.1 (ii).

Proof: Obviously it is impossible to have a=0 and b#0 for any Izll-l,lzzl<1,
because otherwise |H| would be unbounded there. If a=b=0 for some |zlol-1,

|z20|<1 then consider an arbitrary small arc rl of lzll-l issuing from Z39°
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Let rz be the continuous [12] arc traced out by z, (beginning from 220) such
that a(zl,zz)-o is satisfied. Note that since rl is assumed arbitrarily small,
due to the continuity property of zeros of a polynomial as a function of its
coefficients, 1‘2 must lie completely within |z2|<1. We next claim that for
zlerl there must exist values of zzer2 such that a=0, b#0, because otherwise a
and b would have infinitely many common zeros, which due to Bezout'’s theorem
[3) violate the fact that a and b are relatively prime polynomials. However,
since rlc{zl,lzll-l} and rzc(z2;|z2]<1} this latter conclusion has already been
shown to be impossible. Thus az0 for lzll-l,lzzl<l.

Finally, if a(zlo,zzo)-o for some lzlol-lzzol-l then b(zlo,zzo)-o because
otherwise |H|<1 would be violated in lzll-l,lzzl<l at the vicinity of
(zlo,zzo). Thus existence of infinitely many such (210'220) would again
violate the relative primeness of a and b.

We next assume the filter to be (pseudo) lossless in the sense described
earlier i.e., equations (4.2.1) and (4.2.10) are satisfied with equality.
Consequently, from (4.2.10) we then have that for all 2-tuples () ,0y) with the
possible exception of finitely many (4.2.13) holds true.

IH(w )| =1 (4.2.13)

We first note that the rational transfer function H(zl,zz) of a (pseudo)
lossless fully recursive half-plane transfer function satisfies the property
that

H(zl,zz) H(zl,zz) =1 (4.2.14)

To subssantiate this result we observe from the definition of the operation ~
that H(zl,zzl = H*(zlizz) for |zll-|zzl-1. Consequently, from (4.2.13) it
follows that H(zl,zz)-ﬂ- (zl,z ) for all 2-tuples (zl,zz) on lzll-lzzl-l with
possible exception of at most flnltely many values. Thus the two variable
rational function H(zl,z ) and H™ (zl,z ) assume equal values at infinitely
many distinct points (z,,2,), and consequently, due to analytic continuation
are identically same, i.e., H(zl,z ) = H (zl,z ) for all 2 and z,.
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For convenience of further exposition the following terminology will be
introduced. Any rational function H(zl,zz) as expressed in (4.2.11) will be
said to be a fully recursive half-plane all-pass function if H(zl,zz) satisfies
the conditions stated in property 4.2.1 and in equation (4.2.14). Thus,
transfer functions of (pseudo) lossless fully recursive half-plane filters are
fully recursive half-plane all-pass functions.

A function A(zl,zz) of two variables 200 250 when expressible as a polynomial
in zZ, with coefficients as rational functions in z, will be said to be a
pseudopolynomial (in zz). Thus, if A(zl,zz) is a pseudopolynomial then

N
A(zl,zz) = uo(zl) + al(zl)z2 +o.ot uNz(zl)zz2 (4.2.15)

where o (2,)'s are rational functions in z;. With A(zy,2,) as given in
(4.2.15), where %y (zl) is not identically zero, the integer N, will also be
denoted by deg,A. 2 Furthermore, the notation K(zl,zz) will be used to denote
the pseudo- polynomial obtained from A(z,,z,) as:

~ N.
R(zy,z,) = A(zl,zz)zzz (4.2.16)

Two pseudopolynomials B(zl,zz) and C(zl,zz) are said to be coprime if there is
no pseudopolynomial D(zl,zz) actually involving zZy such that B(zl,zz) =
D(zl,zz) Bl(zl,zz) and C(zl,zz) - D(zl,zz) Cl(zl,zz) for some pseudopolynomials
Bl(zl,zz) and Cl(zl,zz). The following property then holds true.

Property 4.2.3: Any fully recursive half-plane all-pass function H(zl,zz)
(thus, rational transfer function of (pseudo) lossless fully recursive
half-plane filter) can be expressed as follows:

H(zl,zz) = -D(zl) (A(zl,zzy/x(zl,zz)) (4.2.17)

where i) A(zl,zz) is a pseudopolynomial

N -
ii) D(zl) - zZ)Y [d(zl)/a(zl)] , where d(zl) is a polynomial in Zy0 Y

is a constant of unit modulus and N = integer.
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iii) the pseudopolynomials A(z,,z,) and K(zl,zz) are coprime,
iv) K(zl,zz) # 0 for all |z;|=1, |z,|<1.

Conversely, any rational function expressible as in (4.2.17) with (i), (ii),
(iii) and (iv) in force is a fully recursive half-plane all-pass function.

Proof of property 4.2.3: Let H(zl,zz) = A(zl,zz)/B(zl,zz), where A = A(zl,zz)
and B = B(zl,zz) are pseudopolynomials expressible as A = A, and B = bN/bD,
where in turn ay = aN(zl,zz), bN = bN(zl,zz) are polynomials in both z; and Zy,
whereas a, = a,(z,) and by = b,(z,) are polynomials in z, only.

We further assume that H = H(zl,zz) expressed as in (4.2.18) is in irreducible
rational form i.e., the pairs of polynomials (aN,aD), (bN,bD), (aN,bN) and
(bD,aD) are relatively prime.

H = (bpay)/(ajh) (4.2.18)

Then from (4.2.18) equations (4.2.19), (4.2.20) and (4.2.21) follows, where the
generic notation nip for denoting the degree of the polynomial p in the i-th
variable has been used.

B = fle (3B /ma) = ((ab /b aiz, N P4 1 (4.2.19)
2pby)/Ppay) = Llaghy)/(bpay)izy = 7z 2.
" nlbD + nlaN 20, vp = nlaD + nle >0 (4.2.20 a,b)
and N1 - nZaN - anN » (4.2.21)

Since H is analytic in lzll-l, |zzl<l and.neither ;D nor SN can have a factor
zZy, it clearly follows that N, 2 0. Also, since H in (4.2.18) is in
irreducible rational form, it follows by comparing (4.2.18) and 2.19) that

N

boa = ab z N, 1 «ba 2z D (4.2.22 a,b)
D3N pPn 21 %2+ %8pby = bpay z; L. '

where o = c(zl,zz) is a polynomial in 2, and z,. By inserting (4.2.22b) into
(4.2.18) and subsequently making use of the relations between ay and ay
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between ;D and ;D and finally by using A = aN/aD, (4.2.20) and (4.2.21) we
obtain the following

-(nlaN + nle) nZaN
z

B = af (agby)/(a o) 1AA].zy 5 (4.2.23)
. . anN
By defining d = ayb, and noting the fact that A=l z, we then have:
-{n + 0y, )
- 1 1
H = a(d/d)(AAR) z, N N (4.2.24)

Since H 1in (4.2.18) is irreducible and analytic in lzll-l,|22|<1 we note that

anN cannot have a factor z,. Invoking this fact and considering the ~ of
(4.2.222) we then have:

aa a

-k
abDaD = anNz1 (4.2.25)

where in (4.2.25) k is the total multiplicity of 2, in (anN)‘ By substituting
(4.2.25) into (4.2.22b) we obtain an-zrD'k (note that since from (4.2.20b) Vp =
degree of (anN) in 2, it obviously follows that vD—kZO). Consequently, it must

be true that a is a monomial involving 2y only i.e., is of the form

vD—k v _ -k

o=Y2Zy for some constant y. Then aa = yy* = zlD . Thus, |v|=1l. Therefore,
(4.2.24) yields (4.2.17) with N = Vp=(Dy, + My + k). Properties 4.2(i) and
4.2(ii) are thus established. To show tha¥Y 2(iii] holds true note that

n,, -n
- a 1 1
A= (aN/aD) 2 % hN (4.2.26)

Consequently, if A and A has a pseudopolynomial common factor then it follows
from Ay = a/a, and (4.2.26) that ay and ay must have a common factor involving
Z,. In view of (4.2.22a,b) then anN and bbaN would not be relatively prime,
thus violating %the irreducibility of H in (4.2.18). Finally, to prove (iv)
note .that it follows from property 4.2.1, (4.2.18) and (4.2.22b) that anN and
thus ay is nonzero for lzll = 1, and

|22| < 1.

The converse proposition follows trivially from the fact that any H = H(zl,zz)
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satisfying (4.2.17) along with (i) throggh (iv) is necessarily analytic in Izll
=1, |22| < 1 and has the property of HH = 1 on Iz} = Iz, = 1.
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4.3. PFULLY REQURSIVE SYMMETRIC BALF-PLANE LOSSLESS TWO-PORTS:

Characterizations of fully recursive symmetric half- plane passive as well
as lossless one-port filters have been established in the previous section in
terms of the transfer function of the filter. In this section we make use of
the results of the previous section to characterize fully recursive symmetric
half-plane lossless two-ports. 1In particular, a convenient representation for
such two-ports analogous to the Belevitch canonical representation of
continuous time 1-D 1lossless circuits of classical network theory (8] is
developed. This representation is then subsequently used in section 4.4 to
synthesize the filter in a specific structure.

A two-port system of the type under consideration is lossless if (4.3.1)
holds true for any finite (pseudo) energy inputs xl(nl,nz) and xz(nl,nz).

IEly, (ny,n) 12 + £Ely,(ng,np) 1% = EZixy(n).n)) 12 + EZixy(ny.ny) 12
(4.3.1)

Considering xz(nl,nz) = 0 for all n,, n, we then have from (4.3.1) that for
any finite (pseudo) energy xl(nl,nz);

thyl(nl'nz)lz < tt|x1(n1,n2)|2, ztlyz(nl,nzn2 < £t|x1(n1,n2)|2
(4.3.2a,b)

On the other hand, if S = S(zl,zz) - [sij(zl,zz)] is the transfer function of
the two-port then for xz(zl,zz) s 0 we have Yl(zl,zz) = su(zl,zz)xl(zl,z2 and
Yz(zl,zz) - 521(21'22)x1(21'22" where as in last section capital letters are
used to denote 2-D z-transforms. Thus, due to (4.3.2a) and (4.3.2b) the
transfer functions S11 = Sll(zl,zz) and Sy1 = Sp1(24,2,) are (pseudo) passive,
and thus satisfy property 4.2.1. Similary, by considering xl(nl,nl) = 0 for
all n, Ny it can be shown that S15 = 512(24,2,) and S59 = S95(24,2,) satisfy
Property 4.2.1.

Furthermore, by considering 2-D Parseval’s theorem (4.3.1) can be made to yield
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(4.3.3) where the column vector x(”i'”2) = (xl(“i'”2) xz(“i'“z))t' and *
denotes the combined operation of complex conjugation and matrix transposition.

I I X (w0 (1, - s* () s0y)S(wy o) )Xy ) = 0 (4.3.3)

-n-n

Since (4.3.3) holds for any X(wi w2) it follows that for any 2-tuple (a& “b)
except possibly finitely many, we have S (uﬁ “7)5(”1 wz) =1, This latter
equation, by exploiting arguments similar to those used 1n the paragraph
following (4.2.14) yields that for all 2y, 2yt

S(zl,zz) S(zl,zz) = 12 (4.3.4)

A (2 x 2) rational matrix S = S(zl,zz) is said to be fully recursive half-plane
lossless bounded if: (i) each entry of S satisfies the conditions expressed in
properties 4.2.1 (i), (ii) and equation (4.3.4) holds true.

Note that the transfer function of a fully recursive half- plane lossless
two-port is necessarily of the above type. As a consequence of property
4.2.2, we then have the following important conclusion.

Proposition 4.3.1: Each entry of a fully recursive half-plane bounded matrix S
- [sij] satisfies lsijl < 1 for all lzll-l and Izzl<1.

Proof. Sane on |21| = |z2|-1 we have S S = 12, and thus lsll' + |521| =1,
lszzl + '812' = 1, which in turmn imply stj' <1 for all i,j. The result then
follows from property 4.2.2.

Consider next a fully recursive half-plane lossless bounded matrix S. Since
each entry of S satisfies property 4.2.1, the rational fnction det H also
satisfies property 4.2.1. Also, it follows from (4.3.4) that (dez S)(det) = 1.
Thus, S is a fully recursive symmetic half-plane all-pass function as defined
in section 4.2 and admits of the representation (4.2.17) described in property
4.2.3, i.e., (4.3.5) holds.

det S = -D.(A/A) (4.3.5)
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Consequently, it follows from (4.3.4) and (4.3.5) that

Syy = = (LDNHAR)S,,; Sy = (I/D)A/RIS,, (4.3.6a,b)
S15 = (I/D)AMA)IS, i Sy = - (1/D)AR)S) (4.3.7a,b)

It may be shown via the operation ~ that (4.3.6a) is identical with (4.3.7b),
where as (4.3.6b) 1is identical with (4.3.7a). Now since S11 in (4.3.7b)
satisfies property 4.2.1, it follows that when 511 is expressed in irreducible
rational form, each of the irreducible factors of the denominator polynomial
must have zeros in |zll-1, lzzlzl. However, due to property 4.2.1, 522 is
analytic in lzll-l. |22|<1 and thus 595 is analytic in lzll-l, |221>1- This is
possible, however, only if the denominator polynomial of S11 in irreducible
rational form is completely cancelled by the numerator of (A/A). Thus,
(4.3.82a) follows, where B is a pseudopolynomial. By inserting (4.3.8a) in
(4.3.7b) agd performing the operation ~, (4.3.8b) follows via the use of the
identity DD = 1i. Equations (4.3.9a,b) follow from (4.3.7a) in a similar
manner, where again C is a pseudo-polynomial.

Inserting (4.3.8) and (4.3.9) in the expression for (det S) in (4.3.5) we then
have
AA = BB + CC (4.3.10)

Also, since s22 and 512 are analytic in Izllnl, |22|<1 we have from (4.3.8b)
and (4.3.9b) that:

degZB < deng ; degzc < deng (4.3.11)
The above discussion can be succinctly expressed in the following

representation of a fully recursive symmetric half- plane lossless bounded
matrix.

Property 4.3.1: Any fully recursive symmetric half-plane lossless bounded
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matrix can be represented in terms of three pseudopolynomials A, B and C as in
(4.3.8) and (4.3.9), where A is nonzero in |z (=1, |[z,[<l; the
pseudopolynomials A and A are coprime; and furthermore (4.3.10), (4.3.11) hold
true. Conversely, any matrix, which admits of the above representation is fully
recursive symﬁetric half-plane bounded.

Since property 4.2.1 is automatically satisfied by each entry of a matrix §
expressed via (4.3.8), (4.3.9) and (4.3.10), to establish the above converse
proposition we only need to observe that straightforward algebraic manipulation
with (4.3.8) through (4.3.10) yield (4.3.4). For convenience of exposition any
S expressed as in (4.3.8) and (4.3.9) will be referred to as in standard form.

A fully recursive half-plane lossless two-port can be alternatively described
by means of a chain matrix T = T(zl,zz) defined as in (4.3.12)., where X,, X

and Yy, Y, are respective inputs and output signals from ports 1 and 2.

st xz.}

X, | Y2J (4.3.12)

[~

1’ 72

It can be easily shown from (4.3.8) through (4.3.12) that the following
property characterizes the chain matrices of the type described above.

Property 4.3.1’: The chain matrix T = [Tijl associated with a fully recursive
half-plane two-port is lossless if and only if it can be expressed as

Tll = DA/C ; le = B/C (4.3.13a,b)
- n . x :
T21 = D822 A/C ; T22 = A/C (4.3.14a,b)

where n, = deng, and A, B, C and D satisfies the same restrictions described

in property 4.3.1. Also, any T as in (4.3.13), (4.3.14) is said to be in
standard form.
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4.4. SYNTHESIS OF FULLY RECURSIVE HALF-PLANE LOSSLESS
TWO-PORTS:

A procedure for synthesizing fully recursive half-plane lossless two-ports as
an interconnection of more elementary building blocks of the same type will be
developed in this section. The synthesis algorithm can be viewed as a
generalization of the algorithm for synthesizing 1-D discrete lossless
two-ports as described by Rao and Kailath in [(6]. Our synthesis procedure
exploits the unique feature of the algorithm described in {6] that (in 1-D)
given (polynomials) A, B, C the arithmetic operations needed to be performed on
the coefficients of A, B and C in each cycle of the algorithm requires rational
operations only. To the best of our knowledge this is the only algorithm of
the above mentioned type available for synthesis of 1-D discrete as well as
continuous domain lossless two-ports including those in classical network
theory [(8]. (All other algorithms known prior to (6] required nonrational
operations e.g., polynomial factorization). The basic structure of the filter
to be presently synthesized would thus be the same as in [6]), whereas the
elementary building blocks are certain 1-D two port sections to be referred to
as the generalized Gray-Markel sections (GGM section) and z,-type delays, each
of which are fully recursive half-plane lossless.

A generalized Gray-Markel section is a 1-D two port as shown in figure 4.4.1
where the 1-D transfer functions (assumed rational) kl and k2 satisfy the
relations!. .:

-~ ~

klkl + k2k2 =1 (4.4.1)

and are such that k; (and thus k, in view of (4.4.1)) satisfies kjk, = [k, |2 <
1 everywhere on |zl| = 1 with Ehe possible exception of finite mumber of values
of zy for which we may have klkl = |k1|2- 1,

We first note that given any rational function kl of 2y satisfying the above
conditions it is always possible to find a rational function k2 satisfying the
same conditions as that of k1 along with (4.4.1). (The role of kl and kz can
obviously be interchanged in the present considerations); To show tgis let kl

- nl/'d1 where n,, d1 are polynomials in Zy- Then (1 - klkl) = Nl/(dldl)' where

- 102




~

Nl = dldl— 1;1. Thus, Nl - Nl' and for all z, on lzll -~1, Nl(zl) is real and
we have that Nl(zl) > 0 as a consequence of klk < 1. Therefore, the

(spectral) factorization N1 = nyn,, where n, is a polynogial in 2 hold§.
Also,~by (possibly) rearranging the irreducible factors of (dldl) to write dld1
= dde' where d2 = polynomial, we can have k2 = nz/d2 such thgt (4.4;1) is
satisfied. Note that since the factocrizations N, = n,n, and dld1 =- d2d2 are
not wunique the kz so obtained is not unique unless further restrictions are

- imposed.

The transfer function matrix SG = SG(zl) associated with such a GGM section can
be expressed as in (4.4.2a), whereas the corresponding chain matrix T is given
in (4.4.2b).

] I
i-kl k, LS
ss=| . . Tg = (L) ‘J (4.4.2a,b)
kg Ky ko1

Since Sg in (4.4.2a) satisfies the representation described in property 4.3.1
with A = 1, B = kl, C = k2 and D = 1 the GGM section is indeed a fully
recursive half-plane lossless two-port.

To proceed with the synthesis of a prescribed fully recursive half-plane
lossless bounded matrix S or, equivalently, corresponding chain matrix T as
described respectively in property 4.3.1 or 4.3.1', we first note that in view
of porposition 3.1 the rational function: k1 = ky(zg) = §11(2,,0) satisfies
lkll < 1 for all lzll = 1 with the possible exception of finite number of
values of zZq where |k1|-1. Therefore, in view of the preceeding discussion k1
defines a GGM section i.e., a k2 can be found such that lk2|<1 everywhere on
|21|-1 with the possible exception of finite number of values of z,, for which
|k2|-1 and that (4.4.1) is satisfied.

1'

Step 1: The first step is to extract a GGM section with kl = Sll(zl,O) from
prescribed S or T as shown in figure 4.4.2. Since a cascade connection of two
two-ports amounts to multiplication of the corresponding chain matrices, the

chain matrix of the remaining two-port is then T’ = Tb'lT. From (4.3.13),

-
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(4.3.14) and (4.4.2b) we can write:

~ Ny ]
D(A—-lez2 ) B—klA
T = (l/Ckz) : (4.4.3)
D(Bz2 -klA) A—kls_

We next define the pseudopolynomials A’, B’, C’ and the 1-D rational function
D' as in (4.4.4) and (4.4.5) below, where 'p-p(zl) is the conjugate resiprocall
polynomial factor of largest degree present in the numerator of K—kIB, when
expressed in irreducible rational form.

~ ~ ~ D
PA' = A(1-k;S;) = A-kBz, © ; pC' = Ck, (4.4.4a,b)

pB’ = A(S),-k,) = B-k,A ; D’ = D(p/p) (4.4.5a,b)

We claim that degZA'~- geng.__ To prove this, clearly deng' < deng and note
that (4.4.4a) yields pA’/A = l-klsn, wgich implies that if deng’ < deng then
for arbitrary z;, we would have Kk, (z;)S),(2),0) = |S;;(z,,0)1% = 1. The
impossibility of this latter situation has already been demonstrated. As a

consequence of this we can write T’ as in (4.4.6) and (4.4.7), where n,, =

A
deng' = deng.
Til = D'A'/C' ; Tiz = B’ /C’ (4.4.6a,b)
~ Dy, _
! = D'R’ " . ! = A? ’
T21 D'B z, /C' ; 32 A'/C (4.4.7a,b)

We next claim that the pseudopolynomial A’ satisfies the properties that A’
# 0 for |z;|=1, |z,]<1 and that A’ is coprime with A’. _To prove this we write
A’ = AL/AL in irreducible -ational form, and thus A' = (%).za, where
a = integer and A‘:/Ab is in irreducible rational form. Thus, from the

lA polynomial p is said to be conjugate reciprocal if E)-v.p for some constant

Y
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definition of A’ it follows that gﬁ is devoid of conjugate reciprocal
polynomial factors in Z; only. If we assume for the prupose of a proof by
contradiction tgat for some va}ue of 21721 s 25725 with |z10|-1, |220|<1 we
have A’=0 i.e., Aﬁ-o then since Aj cannot have a factor (2y-244), by changing
the value of zy from 250 along an arbitrarily small arc ri of the unit circle
lzl|-1 it would be possible to find a continuous [12] set (zl,zz) of zeros of
Aj i.e., also of A’ with z €T, <(z; 7|2 =1} and |z,|<1.

Also, since it follows from (4.4.4a2) and degZBSnA-nA' that pﬁ'-ﬁ(l-ilsll)
and A#0 in |zllsl, |22|<l (cf. property 4.3.1) we would then have that for all
zleI'1 there exists some z, in |22|<1. such that klsll-l. Since lkllgl,lslllgl
for all |21|-1,|22|<1 (cf. Proposition 4.3.1) the last conclusion implies that
there exists z, in l22|<1 such that |k1|-|sll(zl,0)l-1 and |Sll(zl,zz)!-1 for
all zlsrl. However, this last conclusion leads to a contradiction in view of
Property 4.2.2a. Thus, A'20 i.e., Kﬁto for |z |=1,]z,]<l.

Also, since due to Property 4.2.2a lill-lsll(zl,O)l-l is possible for at
most finite number of values of 2y, for |zll-|zzl-1 we have |511|$1 and A#0 for
at most finite number of exceptions on the distinguished b?undary of the unit
bi-disc, we conclude from pﬁ'-ﬂ(l—klsll) that A’, thus A, may have at most
finite number of =zeros on |zl|-|z2|-1. Since as showg earlier Kﬁ¢o in
|21|-1,|22|<1 it follows from Assertion 4.2.1 that Ay and A, are relatively
prime polynomials. Consequently, the pseudopolynomials A and A’ are relatively
prime,

. Finally, straightforward algebraic manipulation along with (4.4.1) yields
AA’ = BB' + CC’' , whereas degZA' < degZB', degZA' < dQQZC' follow from
(4.4.4a,b), (4.4.5), (4.3.11]) ard n,=n,, .
possesses the requisite properties for T’ to be in standard form, in view of
Property 4.3.1’ all the conditions necessary for T = [Tij], as given in
(4.4.6), (4.4.7), to be a fully recursive half-plane lossless two-port chain

matrix are satisfied.

Since, clearly D’ as in (4.4.5b)

We further note that as a consequence of the choice kl-Sll(zl,O) we have
from (4.4.5a) that B'(zl,O) = 0 for arbitrary zZy i.e., the pseudopolynomial B’
contains z, as a factor. Also, if C contains a pseudopolynomial factor z, then
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8o does C'.

Step 2: In the next step we form a fully recursive half-plane two port T(z) by
interchanging the two output terminals in each port of T’ as shown in figure
4.4.3. It can be easily shown that T(Z) can then be written in terms of
pseudopolynomials A(z), B(z’, C(Z) and the rational function D(z) in standard
form as expressed in property 4.3.1’, where

(2)

A2 aar, B¥ L, 2 2pr, b2 p (4.4.8)

§%§€ 3: A GGM section is then extracted from the two-port with chain matrix
T by iterating step 1 on T(z) to get a fully recursive half-plane lossless
two-port chain matrix (3, 1f pseudopolynomials A(3), 8(3), c'3) ang rational
function D(3) represent T(B) in standard form as in property 4.3.1’ then 8(3)
would have a factor Z,. Also, since from (4.4.4b) and (4.4.8) we have C(3) -
C(Z)k2(3) - B'k2(3), where k2(3) defines the GGM section presently extracted,
and B’ has a 7astot z, we conclude that C(3) has a factor z,. From this and the
fact that A(3)A(3) - 8(3)8(3) + C(3)C(3) it follows that Ae3)3(3) = 0 for z, =
0 and for arbitrary z,. Since A%’ 0 for |z)| = 1 and |z,] < 1, we conclude
A(3) = 0 for zZ, = 0 and for arbitrary 2. Consequently, A 3) has a factor z

and it is possible to write, for some pseudopolynomials A(4), 8(4) and C(4?
that

Al 2 a3, ) L (D) ) () (4.4.9)

2

Step 4: The last step in the synthesis cycle is to extract a z, type delay
from ;TB) as in fiqure 4.4.4 to produce a two-port with chain matrix T(4),

which in standard form can be expressed in terms of A(d), 3(4), C(4).
Furthermore, A2 503 L0 for 12,1 =1, {251 < 1; A4 2 K3 can have at
most finitely many zeros on l21| - |22| = 1. Also, it follows from (4.4.9) and
losslessness of T(3) that

A(40,04) | Bla)g(4) | 2(4) () (4.4.10)

and deg 't ¢ deg A ®), deqyc!® deg A




4)

Thus, the two-port associated with T(
Furthermore, note that

is fully recursive half-plane lossless.

(4) (2)

degZA = degzk(3)-l = deng

where the first equality follows from (4.4.9); the second and the fourth from
the fact that in step 1 we have n, = n_,; and the third from (4.4.8).

-] = degZA'-l = deng-l,

A A

Consequently, after iterating deng times the cyclic algorithmdescribed in
Steps 1 through 4, we obtain a lossless chain matrix T¢ independent of z,,
which in standard form is described by Ag = Af(zl). Bf = Bf(zl)’ Cf - Cf(zl)
and D = Df(zl).

Terminal Step: In the final step we extract another GGM section as in Step 1
to produce a fully recursive half-plane lossless two-port Sg with Ay, By, Cp
and D in standard form. Since A, B, are functions of z, only it follows from
(4.4.5a) that B, = 0. Also, since AjA; = BgBy + C,Cy and Ko = Ay # 0 for all
|zll = 1 the 1-D transfer functions (50)12 - DOCO/Ao and (so)21 = CO/A0 are
both well defined and of unit modulus on lzll =1 i.e., they are all-pass
functions.2 The realization for such a two-port is shown in fiqure 4.4.5. The

resulting composite filter structure is as shown in figure 4.4.6.

2Note that (S5);, and (S;),; are not necessarily stable rational functions,
i.e., may have poles in |21|<1.
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4.5. DESIGN OF 2-D FULLY RECURSIVE HALF-PLANE FILTERS:

Two-dimensional filters with only two kinds of symmetries in their
magnitude responses, namely the fan type symmetry and the circular symmetry are
of practical interest. The locii of canstant gain in the ) -0, plane for the
fan filters are required to be approximate straight lines, whereas those for
the circularly symmetric filters are required to be closed circles in an
approximate sense. In addition, we also require the pass (or the stop) region

- of the fan filter to be the region approximately lying within the straight

linesui-mxzandaxl--mzforsome0<u<1.

Our design proceeds by requiring the transfer function S,, = C/A (cf.
equation (4.3.9a)) of the lossless two-port S to have the desired
characteristics. However, unlike the corresponding problem in 1-D, due to
nonfactorability of mD polynomials it is in general not possible to find a
pseudo-polynomial B satisfying (4.3.10) from A and C. To circumvent this
problem it will be further assumed that the two-port is either symmetric i.e.,
S11 = Sy3r S91 = Syy OF antimetric i.e., 511 = = Sy9¢ 591 = S12: n'mus, in the

symetricnand in the antimetric case we Eeﬁpectively have B = -DBzZA,

B = DBzZA, whereas we also have C = DC:zzA in both cases. We next define two
rational functions s1 and s2 as in (4.5.1) and 5.2) respectively for symmetric

or antimetric two ports.
S; =(B+C)/A, S, = (B~C)A (4.5.1a,b)
S, = (B + JC)/A, S, = (B~ JC)A (4.5.1’a,b)

From (4.5.1) it is easily verified that S, = 5,5, = 1. Thus for each i, |S,|
= 1 for all lzll - |z2| = 1 except possibly finitely many values where it is
undefined. Furthermore, A # 0 for l2;] = 1, jz,] < 1. Thus via Property 4.2.2a
it follows that Sy for each i = 1,2 in (4.5.1) must be a fully recursive
half-plane all-pass function. Exactly same conclusions hold for S; and S2 in
(4.5.17). Consequently, Sy, S5 can be expressed as in (4.5.3), where Dy, Dy
and A, Ay satisfy properties analogous to D and A in Property 4.2.3.

S, = - DlAl/Al, s2 -~ DZAZ/KZ (4.5.3a,b)
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Note that even if A, B, C are real rational functions, S, and S, are real in
(4.5.1ab) but not in (4.5.1’a,b). Thus, a symmetric filter can be realized by
making use of the rela§ion Sy, = C/A = (Sl-sz)/2, where the one-ports S; and S,
are realized as in Appendix A. Although S,, = C/A = - 3(8,-S,) holds true in
the antimetric case, a realization in terms of this last mentioned equation is
not feasible due to the presence of the factor j unless complex filter
realizations are called for. 1In this case, the pseudopolynomials A, B, C which
are real, can be found from (4.5.1’a,b) and subsequently S5, can be realized as
being embedded in a real two-port S described by A, B, C in standard form. The
design problem then boils down to appropriately choosing the real 1-D rational
functions Dy, Do, and real pseudopolynomials A, Ay sO that the frequency
response requirements on '521' are satisfied. This latter step may be carried
out by using numerical optimization (e.g. Levenberg-Marquadt). For the purpose
of numerical optimization, however, the following symmetry observations have
the effect of reducing the number of parameters to be optimized.

Note that if |521(w1,w2)l possesses either the fan-type or the circular-type
symmetry then '521(”1'“7)| must have, in particular, the so called quadrantal
symmetry (14] i.e., ISZI(”i’mi)' is unaltered if the signs of either w or w,
or both are changed. This requirement coupled with the stability property of
521 demands that the denominater pseudopolynomial of 521, and thus A and A, in
(4.5.3) satisfy a certain factorability property. It then proves to be
expedient to carry out the optimization procedure on these factors rather than
on the pseudopolynomials Ay, A,
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APPENDIX:

In this appendix we prove that a fully recursive symmetric half-plane all-pass
function H-H(zl,zz) can be synthesized as an interconnection of GGM sections
(cf. Section 4.3) and z,-type delays. This can be considered to be a
generalized form of Schur’s algorithm [9].

Let kl - kl(zl) = H(zl,O). Since B is as in Property 4.2.3 it follows from
Property 4.2.2a that |k1|<1 for all lzll-l with the possible exception of
finite number of values of zy, where lkll-l. Thus, a k2 satisfying (4.4.2) can
be found i.e., kl and kz defines a GGM section. Consider next the function Hy
= Hl(zl,zz) defined as in (4.Al.l1), which can be interpreted as the residual
transfer function after extraction of the GGM section just mentioned from H,.

B = (H - ky)/(1 - ki) (4.A1.1)

From (4.2.17) it then follows that H' = - pA’/B’, where pA’ = DA + kA, B’ = A
+ kluA, p being the conjugate reciprocal factor of largest degree present in

the numerator of (DA + k K) when exptessed in irreducible rational form. Next,

since we have D = D1 1t follows that pA’ /A - D(l-k H). Consequently, if deg,

A’ < deg A then we would have k H(zl,O) -|H(zl,0)| = 1 for arbitrary 2y, which

is impossible ~(cf Property 4.2.2a). Thus, deng deg A. It then Clearly

follows that pA’ = D(A + k,DA) = DB’, thus H' = - D;(A'/A’); D, = D(p/p).

Also, since A’ = - K(H-kl) it follows that A’ = 0 for z,=0 and arbitrary z,.

Thus, the pseudopolynomial A’ has a factor z,. By defining A1 via ZA, = A' we

can write Hy = z,H’, where H, = - Dl(Al/il). Note that H, can be constructed

simply by extracting a zz-type delay from H'. Clearly, Dy satisfies condition
(ii) of property 4.2.3. Also, by following arquments similar to that used

‘after (4.4.7a,b) it can be shown that 31 = A’ ¢ 0 for lzy} =1, |z5] <1 and

the pseudopolynomials A, and 51 are coprime. Thus, condition (iii) and (iv) of

Property 4.2.3 are satisfied by Hl' which has now been proved to be fully

recursive symmetric half-plane lossless. Since degZA1 - deng' -1m= deng -1

the procedure just described when applied deng times yields a circuit as shown

in figure 4.A.1, in which the terminating section is an all-pass (not

necessarily stable) in zZy only.




CONCLUSIONS AND FURTHER WORK

5.1 CONCLUSIONS:

Due to potential applications of multidimensional passive filtering schemes in
manifold areas of signal processing e.g., including frequency filtering,
modelling of random fields associated with detection and estimation of
parameters of multidimensional signals, fundamental issues relating to the
description of passive m-D systems and their synthesizability have been
addressed in the present report. First, various classes of stable
multidimensional polynomials essential to the discrete domain description of
passive mD systems has been delineated. The synthesizability of quarter plane
type causal m-D digital filters has been investigated in a very general
setting. Finally, due to its potential benefit to be derived from currently
emerging parallel hardware architechtures [1), [2], a method of passive
filtering within the framework of an alternative recursive scheme, namely, the
fully recursive half-plane recursive scheme has been introduced and studied.
Filter synthesis procedures within this framework has also been examined.

A major problem in processing such m-D discrete signals in real time is the
large amount of data rate involved. Conventional digital filtering algorithms,
which process data sequentially, is therefore, inappropriate for such
processing purposes. In spite of the fact that, as in the 1-D case, the basic
linear algebra operations such as vector matrix multiplication form the core of
many m-D signal processing algorithms available, a detail study of their fast
VLSI/optical implementation, which utilizes the wunderlying structure of
multidimensional problems is yet unavailable. On the other hand, a consistent
scattering formalism for passive multidimensional systems has begun to emerge
as a result of the presently reported work, it should now be possible to
undertake an investigation into the design of a broad variety of concurrent,
numerically stable and fault tolerant m-D signal processing algorithms.
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5.2. FURTHER WORK:

Study of novel multidimensional signal processing algorithms of the concurrent

‘ type for implementation in VLSI/optical architectures via the framework of
h passive scattering theory should thus form the major emphasis of future
research in this area. Two generic considerations ensuing from the present work
work may potentially form the basis of this investigation. To elaborate on the
first, note that traditionally most m-D processing (filtering) have relied on
the quarter-plane type recursion schemes in the causal order of data points.

However, since unlike 1-D, in most multidimensional applications the
independent coordinates describing the signal may not have temporal, but only
spatial significance, to impose such a causality restriction is not only
unnecessary, but it may cause severe drawback in fully exploiting the
concurrency offered by the optical architechtures. Due to this, the fully
recursive symmetric half-plane scheme, seems to be most appropriate for a large
number of m-D signal processing problems of diverse nature. To justify this
remark in 2-D, it may noted that the computational model under consideration
have the remarkable property that all data points belonging to a row in the 2-D
lattice space may be simultaneously (in parallel) computed from the data points
belonging to an adjacent row in the 2-D lattice space. Furthermore, as has been
demonstrated in the case of frequency filtering in chapter 4, the computation
just referred to, in fact, involves computing the convolution of the adjacent
rows with a fixed 1-D sequence determined by the transfer function of the
filter. Since 1-D convolution, among other linear algebra operations, are known
to easily yield to high speed optical architechtures using acousto—optic
devices [1), the time complexity of the entire computation can be shown to be
drastically less than filters using other recursive schemes. (In fact, the
speed of this 2-D processing scheme proves to be of comparable order to that of
a 1-D filter, when an implementation of this type is called for). Furthermore,
since for certain 3-D applications, (e.g., in the processing of 3-D time
varying imagery) this type of processing corresponds to processing all of the
data points in a given frame of the image simultaneously, while the direction
of filter recursion corresponds to the direction of flow of time, the
processing scheme under consideration is not only adequate for fast optical
implementation, but is the most natural choice unlike the somewhat contrived
guarter plane causal recursive scheme, which has been almost universally
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adopted in the m-D scattering based signal processing techniques so far.

A second possibility of optical implementation of passive filtering algorithms
arises from the fact that 1-D digital lattice filters has been shown to be
easily implementable via analog optical devices such as the single mode fiber
and directional couplers [1]. The obeservation that the digital lattice section
(also known as the Gray-Markel section) and variations of it can be implemented
in terms of optics, can be potentially utilized in the implementation of
passive m-D digital filters. This conclusion derives from the fact that, as
shown in chapters 3 and 4 any passive m-D digital filter can, in fact, be
implemented as interconnection of modular building blocks each of which can in
turn be viewed as interconnections of a small number of digital lattice
sections. To carry this point 1little further let us note that single mode
optical fibers and directional couplers can be interpreted as passive digital
two-port networks (1] and their propagation characteristics can, in fact, be
described in terms of scattering parameters, which are exactly the tools in
deriving a large variety of 1-D and mD signal processing algorithms of
interest to us in the present context. However, we are unaware of any existing
work which develops this connection further so as to tailor specific m-D
algorithms to fit into the optical architechtures.
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FigureZd. Elementary section with n, = 1

where rectangular boxes are

Gray-Markel sections.

Figure35. Elementary section with n, = 2.
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MISSION

of

Rome Air Development Center

RADC plans and executes research, development, test and
selected acquisition programs in support of Command, Control,
Communications and Intelligence (C%l) activities. Technical and
engineering support within areas of competence is provded to
ESD Program Offices (POs) and other ESD elements to
perform effective acquisition of C°I systems. The areas of
technical competence include communications, command and
control, battle management information processing, survetllance
sensors, intelligence data collection and handling, solid state
sciences, electromagnetics, and propagation, and electronic
reliability/maintainability and compatibality.




